// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/stack_grad_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void StackGradKernel(const Context& dev_ctx, const DenseTensor& out, int axis, std::vector x_grad) { using XPUType = typename XPUTypeTrait::Type; auto outs = x_grad; auto dy_dims = out.dims(); if (axis < 0) axis += dy_dims.size() + 1; auto dy_shape = phi::vectorize(dy_dims); std::vector dx_dims_list(x_grad.size(), 1); std::vector dx_lists; for (size_t j = 0; j < outs.size(); ++j) { dev_ctx.template Alloc(outs[j]); dx_lists.push_back(reinterpret_cast(outs[j]->data())); } int r = xpu::split(dev_ctx.x_context(), reinterpret_cast(out.data()), dx_lists, dy_shape, dx_dims_list, axis); PADDLE_ENFORCE_XDNN_SUCCESS(r, "split in stack_grad op"); } } // namespace phi PD_REGISTER_KERNEL( stack_grad, XPU, ALL_LAYOUT, phi::StackGradKernel, float, int) {}