// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/fluid/platform/for_range.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/kernels/atan2_grad_kernel.h" namespace phi { // dx1 = dout * x2 / ((x1)^2 + (x2)^2) // dx2 = - dout * x1 / ((x1)^2 + (x2)^2) template struct Atan2GradFunctor { Atan2GradFunctor( const T* x1, const T* x2, const T* dout, T* dx1, T* dx2, int64_t numel) : x1_(x1), x2_(x2), dout_(dout), dx1_(dx1), dx2_(dx2), numel_(numel) {} HOSTDEVICE void operator()(int64_t idx) const { float x1 = static_cast(x1_[idx]); float x2 = static_cast(x2_[idx]); float x = x1 * x1 + x2 * x2; dx1_[idx] = static_cast(static_cast(dout_[idx]) * x2 / x); dx2_[idx] = static_cast(-static_cast(dout_[idx]) * x1 / x); } const T* x1_; const T* x2_; const T* dout_; T* dx1_; T* dx2_; int64_t numel_; }; template <> struct Atan2GradFunctor { Atan2GradFunctor(const double* x1, const double* x2, const double* dout, double* dx1, double* dx2, int64_t numel) : x1_(x1), x2_(x2), dout_(dout), dx1_(dx1), dx2_(dx2), numel_(numel) {} HOSTDEVICE void operator()(int64_t idx) const { auto x = x1_[idx] * x1_[idx] + x2_[idx] * x2_[idx]; dx1_[idx] = dout_[idx] * x2_[idx] / x; dx2_[idx] = -dout_[idx] * x1_[idx] / x; } const double* x1_; const double* x2_; const double* dout_; double* dx1_; double* dx2_; int64_t numel_; }; template void Atan2GradKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& y, const DenseTensor& out_grad, DenseTensor* x_grad, DenseTensor* y_grad) { auto numel = x.numel(); auto x_data = x.data(); auto y_data = y.data(); auto out_grad_data = out_grad.data(); auto* x_grad_data = ctx.template Alloc(x_grad, size_t(x.numel() * sizeof(T))); auto* y_grad_data = ctx.template Alloc(y_grad, size_t(y.numel() * sizeof(T))); paddle::platform::ForRange for_range(ctx, numel); phi::Atan2GradFunctor functor( x_data, y_data, out_grad_data, x_grad_data, y_grad_data, numel); for_range(functor); } } // namespace phi