// Copyright (c) 2022 CINN Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/cinn/hlir/op/contrib/argmax.h" #include #include #include "paddle/cinn/common/cas.h" #include "paddle/cinn/common/cinn_value.h" #include "paddle/cinn/common/common.h" #include "paddle/cinn/common/context.h" #include "paddle/cinn/common/macros.h" #include "paddle/cinn/hlir/framework/node.h" #include "paddle/cinn/hlir/framework/op.h" #include "paddle/cinn/hlir/framework/op_strategy.h" #include "paddle/cinn/hlir/op/contrib/sort.h" #include "paddle/cinn/hlir/pe/ir_schedule_pe.h" #include "paddle/cinn/hlir/pe/nn.h" #include "paddle/cinn/ir/ir.h" #include "paddle/cinn/ir/ir_base.h" #include "paddle/cinn/ir/ir_schedule.h" #include "paddle/cinn/ir/tensor.h" #include "paddle/cinn/lang/builtin.h" #include "paddle/cinn/lang/compute.h" DECLARE_bool(cinn_ir_schedule); namespace cinn { namespace hlir { namespace op { using common::CINNValue; using framework::shape_t; using ir::Tensor; std::vector Argmax(const Tensor &in_tensor, const common::Target &target, poly::StageMap stages, const int &axis, const bool &keep_dims, const std::string &name) { auto shape = in_tensor->shape; auto ndim = shape.size(); CHECK_GT(ndim, 0) << "tensor's dim must be more than 0"; int pos_axis = axis; if (axis < 0) { pos_axis = static_cast(ndim) + axis; } CHECK_LT(pos_axis, ndim) << "Axis must be less than tensor's dim"; CHECK_GE(pos_axis, 0) << "Axis must be more than 0"; std::vector output_shape; for (int i = 0; i < shape.size(); ++i) { CHECK(shape[i].is_constant()) << "Input tensor's shape should be constant value."; if (pos_axis == i) { if (keep_dims) { output_shape.push_back(Expr(1)); } } else { output_shape.push_back(shape[i]); } } if (output_shape.empty()) { output_shape.push_back(Expr(1)); } auto sort_index = ArgSort(in_tensor, target, stages, pos_axis, false, name + "_index"); auto res = Compute( output_shape, [=](const std::vector &indices) { std::vector eval_indices(indices); if (!keep_dims && ndim > 1) { eval_indices.insert(eval_indices.begin() + pos_axis, Expr(0)); } else { eval_indices[pos_axis] = Expr(0); } return sort_index.at(0)(eval_indices); }, name); stages->InsertLazily(sort_index.at(0)); return {res, sort_index.at(0), sort_index.at(1)}; } std::shared_ptr StrategyForArgmax( const framework::NodeAttr &attrs, const std::vector &inputs, const std::vector &out_type, const std::vector> &output_shapes, const Target &target) { int axis; bool keep_dims = false; if (attrs.attr_store.count("axis")) { axis = absl::get(attrs.attr_store.at("axis")); } else { LOG(FATAL) << "reduce dimension is not set!"; } if (attrs.attr_store.count("keep_dim")) { keep_dims = absl::get(attrs.attr_store.at("keep_dim")); } framework::CINNCompute argmax_compute( [=](lang::Args args, lang::RetValue *ret) { CHECK(!args.empty()) << "The input argument of argmax compute is empty! Please check."; common::CINNValuePack pack_args = args[0]; std::string tensor_name = UniqName("Argmax_out"); CHECK_GE(pack_args.size(), 1U) << "There should be 1 input args for argmax compute"; Expr in_expr = pack_args[0]; CHECK(in_expr.as_tensor()); Tensor in_tensor = in_expr.as_tensor_ref(); auto stages = CreateStages({in_tensor}); CHECK_EQ(pack_args.size(), 2U); CHECK(pack_args[1].is_string()); tensor_name = pack_args[1].operator std::string(); std::vector out_tensor = Argmax(in_tensor, target, stages, axis, keep_dims, tensor_name); stages->InsertLazily(out_tensor[0]); std::vector cinn_values{CINNValue(out_tensor[0]), CINNValue(out_tensor[1]), CINNValue(out_tensor[2]), CINNValue(stages)}; *ret = common::CINNValuePack{cinn_values}; }); framework::CINNSchedule argmax_schedule([=](lang::Args args, lang::RetValue *ret) { CHECK(!args.empty()) << "The input argument of argmax_schedule is empty! Please check.\n"; common::CINNValuePack arg_pack = args[0]; std::vector vec_ast; for (int i = 0; i < arg_pack.size(); i++) { if (arg_pack[i].is_expr()) { Expr temp = arg_pack[i]; vec_ast.emplace_back(temp); } } CHECK(!vec_ast.empty()); ir::ModuleExpr mod_expr(vec_ast); ir::IRSchedule ir_sch(mod_expr); ir_sch.MergeExprs(); auto blocks = ir_sch.GetAllBlocks(); // TODO: It needs to be rewritten according to the reduction_max operator to // improve performance. Do not use local variables, because the size will // exceed the limit. ir_sch.SetBuffer(blocks[0], "local"); ir_sch.SetBuffer(blocks[1], "local"); long prod_size = std::accumulate(output_shapes[0].begin(), output_shapes[0].end(), 1, std::multiplies()); if (prod_size > 1 && target.arch == Target::Arch::X86) { pe::IRScheduleInjectiveCPU(ir_sch, output_shapes.front(), target, true); } std::vector res{ common::CINNValue(ir_sch.GetModule().GetExprs().at(0))}; *ret = common::CINNValuePack{res}; }); auto strategy = std::make_shared(); strategy->AddImpl(argmax_compute, argmax_schedule, "strategy.argmax", 1); return strategy; } std::vector InferShapeForArgmax( const std::vector &inputs_shape, const framework::AttrMapType &attrs) { CHECK(inputs_shape.size() == 1UL); auto ndim = inputs_shape[0].size(); CHECK_GT(ndim, 0) << "tensor's dim must be more than 0"; int axis; bool keep_dim; CHECK(attrs.find("axis") != attrs.end()); axis = absl::get(attrs.at("axis")); if (axis < 0) { axis = static_cast(ndim) + axis; } CHECK_LT(axis, ndim) << "Axis must be less than tensor's dim"; CHECK_GE(axis, 0) << "Axis must be more than 0"; CHECK(attrs.find("keep_dim") != attrs.end()); keep_dim = absl::get(attrs.at("keep_dim")); std::vector out_shapes; for (size_t i = 0; i < ndim; ++i) { if (axis == i) { if (keep_dim) { out_shapes.push_back(1); } } else { out_shapes.push_back(inputs_shape[0][i]); } } if (keep_dim) { CHECK_EQ(ndim, out_shapes.size()); } else { CHECK_EQ(ndim - 1, out_shapes.size()); } if (out_shapes.empty()) { out_shapes.push_back(1); } return {out_shapes}; } std::vector InferDtypeForArgmax(const std::vector &inputs_type, const framework::AttrMapType &attrs) { CHECK(!inputs_type.empty()) << "The input's type size is 0! Please check again."; return {Int(32)}; } std::vector> InferLayoutForArgmax( const std::vector &input_shapes, const std::vector &input_layouts, const framework::NodeAttr &attrs, const Target &target) { CHECK_EQ(input_shapes.size(), 1U) << "The input's shape size is not 1! Please check again."; CHECK_EQ(input_layouts.size(), 1U) << "The input's layout size is not 1! Please check again."; return {input_layouts, input_layouts}; } } // namespace op } // namespace hlir } // namespace cinn CINN_REGISTER_HELPER(argmax_ops) { CINN_REGISTER_OP(argmax) .describe("This operator implements the op argmax.") .set_num_inputs(1) .set_num_outputs(1) .set_attr( "CINNStrategy", cinn::hlir::op::StrategyForArgmax) .set_attr("infershape", MakeOpFunction(cinn::hlir::op::InferShapeForArgmax)) .set_attr("inferdtype", MakeOpFunction(cinn::hlir::op::InferDtypeForArgmax)) .set_attr( "OpPattern", cinn::hlir::framework::OpPatternKind::kNonFusible) .set_support_level(4); return true; }