/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/data_transform.h" #include "paddle/fluid/framework/data_device_transform.h" #include "paddle/fluid/framework/data_layout_transform.h" #include "paddle/fluid/framework/data_type_transform.h" #ifdef PADDLE_WITH_MKLDNN #include #include "paddle/fluid/platform/mkldnn_helper.h" #endif namespace paddle { namespace framework { static void PassTensorData(Tensor *from, Tensor *to) { to->ShareDataWith(*from); *from = Tensor(); } void TransformData(const OpKernelType &expected_kernel_type, const OpKernelType &kernel_type_for_var, const Tensor &input_tensor, Tensor *output_tensor) { bool transformed = false; Tensor in; in.ShareDataWith(input_tensor); Tensor out; DataLayout lin = kernel_type_for_var.data_layout_; DataLayout lout = expected_kernel_type.data_layout_; // do layout transform if (NeedTransformLayout(lout, lin)) { #ifdef PADDLE_WITH_MKLDNN if (lin == DataLayout::kMKLDNN || lout == DataLayout::kMKLDNN) { PADDLE_ENFORCE( !(lin == DataLayout::kMKLDNN && lout == DataLayout::kMKLDNN), "No layout transform needed between two MKLDNN OPKernels"); if (lin != DataLayout::kMKLDNN && lout == DataLayout::kMKLDNN) { // Case1 - transform from Non-MKLDNN OPKernel to MKLDNN OPKernel // Just set layout/format. No real transform occur auto out_format = platform::MKLDNNFormatForSize(in.dims().size(), ToMKLDNNFormat(lin)); out.ShareDataWith(input_tensor); // For NHWC data we need reshape of tensors as MKL-DNN // is expecting NHWC dims description order platform::MatchShapeToLayout(&out, lin, lout); paddle::platform::set_cur_paddle_data_layout(lin); out.set_layout(DataLayout::kMKLDNN); out.set_format(out_format); } else { // Case2 - transfrom from MKLDNN OPKernel to Non-MKLDNN OPKernel // Do transform via MKLDNN lib TransDataLayoutFromMKLDNN(kernel_type_for_var, expected_kernel_type, in, &out); } } else { // Case3 - transfrom between Non-MKLDNN OPKernels TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out); } #else // Case3 - transfrom between Non-MKLDNN OPKernels TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out); #endif transformed = true; PassTensorData(&out, &in); } // do data type transform if (expected_kernel_type.data_type_ != kernel_type_for_var.data_type_) { TransDataType(kernel_type_for_var, expected_kernel_type, in, &out); transformed = true; PassTensorData(&out, &in); } // do device transform if (!platform::is_same_place(kernel_type_for_var.place_, expected_kernel_type.place_)) { TransDataDevice(in, expected_kernel_type.place_, &out); transformed = true; PassTensorData(&out, &in); } PADDLE_ENFORCE(transformed, "No transform is applied, please check!"); // get output data output_tensor->ShareDataWith(in); } void SetTensorToVariable(const Variable &in_var, const Tensor &tensor, Variable *out_var) { if (in_var.IsType()) { auto &in_lod_tensor = in_var.Get(); auto *tran_lod_tensor = out_var->GetMutable(); tran_lod_tensor->set_lod(in_lod_tensor.lod()); tran_lod_tensor->set_layout(in_lod_tensor.layout()); tran_lod_tensor->ShareDataWith(tensor); } else if (in_var.IsType()) { auto &in_selected_rows = in_var.Get(); auto *trans_selected_rows = out_var->GetMutable(); trans_selected_rows->set_height(in_selected_rows.height()); trans_selected_rows->set_rows(in_selected_rows.rows()); trans_selected_rows->mutable_value()->ShareDataWith(tensor); } else { PADDLE_THROW("unknown var type"); } } } // namespace framework } // namespace paddle