/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include "paddle/gserver/layers/DataLayer.h" #include "ModelConfig.pb.h" #include "paddle/trainer/Trainer.h" #include "TestUtil.h" #include "LayerGradUtil.h" using namespace paddle; // NOLINT using namespace std; // NOLINT P_DECLARE_bool(use_gpu); P_DECLARE_bool(thread_local_rand_use_global_seed); void testActivation(const string& act) { LOG(INFO) << "test activation: " << act; size_t size = 10; TestConfig config; config.biasSize = 0; config.layerConfig.set_type("addto"); config.layerConfig.set_size(size); config.layerConfig.set_active_type(act); config.inputDefs.push_back({INPUT_DATA, "layer_0", size, 0}); config.layerConfig.add_inputs(); for (auto useGpu : {false, true}) { testLayerGrad(config, act + "_activation", 100, /* trans= */false, useGpu, /* useWeight */true); } } TEST(Activation, activation) { auto types = ActivationFunction::getAllRegisteredTypes(); std::set excluded{"sequence_softmax"}; for (auto type : types) { if (excluded.count(type)) continue; testActivation(type); } } int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); initMain(argc, argv); FLAGS_thread_local_rand_use_global_seed = true; srand(1); return RUN_ALL_TESTS(); }