/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/phi/api/backward/backward_api.h" #include "paddle/phi/api/include/api.h" #include "paddle/phi/api/lib/utils/allocator.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/copy_kernel.h" // See Note [ Why still include the fluid headers? ] #include "paddle/fluid/platform/device_context.h" namespace paddle { namespace tests { namespace framework = paddle::framework; using DDim = phi::DDim; TEST(API, matmul_cpu) { // 1. create tensor const auto alloc = std::make_unique( paddle::platform::CPUPlace()); auto dense_x = std::make_shared( alloc.get(), phi::DenseTensorMeta(phi::DataType::FLOAT32, phi::make_ddim({3, 3}), phi::DataLayout::NCHW)); auto* dense_x_data = dense_x->mutable_data(paddle::platform::CPUPlace()); auto dense_y = std::make_shared( alloc.get(), phi::DenseTensorMeta(phi::DataType::FLOAT32, phi::make_ddim({3, 3}), phi::DataLayout::NCHW)); auto* dense_y_data = dense_y->mutable_data(paddle::platform::CPUPlace()); for (size_t i = 0; i < 9; ++i) { dense_x_data[i] = 1.0; dense_y_data[i] = 2.0; } std::vector sum(9, 6.0); paddle::experimental::Tensor x(dense_x); paddle::experimental::Tensor y(dense_y); // 2. test API auto out = paddle::experimental::matmul(x, y, false, false); // 3. check result ASSERT_EQ(out.dims().size(), 2); ASSERT_EQ(out.dims()[0], 3); ASSERT_EQ(out.dims()[1], 3); ASSERT_EQ(out.numel(), 9); ASSERT_EQ(out.type(), phi::DataType::FLOAT32); ASSERT_EQ(out.layout(), phi::DataLayout::NCHW); ASSERT_EQ(out.initialized(), true); auto dense_out = std::dynamic_pointer_cast(out.impl()); for (size_t i = 0; i < 9; i++) { ASSERT_NEAR(sum[i], dense_out->data()[i], 1e-6f); } } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) TEST(API, matmul_cuda) { // Prepare CPU Dense Tensor const auto alloc_cpu = std::make_unique( paddle::platform::CPUPlace()); auto ref_x = std::make_shared( alloc_cpu.get(), phi::DenseTensorMeta(phi::DataType::FLOAT32, phi::make_ddim({3, 3}), phi::DataLayout::NCHW)); auto* ref_x_data = ref_x->mutable_data(paddle::platform::CPUPlace()); auto ref_y = std::make_shared( alloc_cpu.get(), phi::DenseTensorMeta(phi::DataType::FLOAT32, phi::make_ddim({3, 3}), phi::DataLayout::NCHW)); auto* ref_y_data = ref_y->mutable_data(paddle::platform::CPUPlace()); for (size_t i = 0; i < 9; ++i) { ref_x_data[i] = 1.0; ref_y_data[i] = 2.0; } std::vector sum(9, 6.0); // 1. create tensor const auto alloc_cuda = std::make_unique( paddle::platform::CUDAPlace()); auto dense_x = std::make_shared( alloc_cuda.get(), phi::DenseTensorMeta(phi::DataType::FLOAT32, phi::make_ddim({3, 3}), phi::DataLayout::NCHW)); auto dense_y = std::make_shared( alloc_cuda.get(), phi::DenseTensorMeta(phi::DataType::FLOAT32, phi::make_ddim({3, 3}), phi::DataLayout::NCHW)); auto& pool = paddle::platform::DeviceContextPool::Instance(); auto place = paddle::platform::CUDAPlace(); auto* dev_ctx = static_cast(pool.GetByPlace(place)); phi::Copy(*dev_ctx, *ref_x.get(), phi::GPUPlace(), false, dense_x.get()); phi::Copy(*dev_ctx, *ref_y.get(), phi::GPUPlace(), false, dense_y.get()); paddle::experimental::Tensor x(dense_x); paddle::experimental::Tensor y(dense_y); // 2. test API auto out = paddle::experimental::matmul(x, y, false, false); // 3. check result ASSERT_EQ(out.dims().size(), 2); ASSERT_EQ(out.dims()[0], 3); ASSERT_EQ(out.dims()[1], 3); ASSERT_EQ(out.numel(), 9); ASSERT_EQ(out.type(), phi::DataType::FLOAT32); ASSERT_EQ(out.layout(), phi::DataLayout::NCHW); ASSERT_EQ(out.initialized(), true); auto dense_out = std::dynamic_pointer_cast(out.impl()); auto ref_out = std::make_shared( alloc_cpu.get(), phi::DenseTensorMeta( phi::DataType::FLOAT32, out.dims(), phi::DataLayout::NCHW)); phi::Copy(*dev_ctx, *dense_out.get(), phi::CPUPlace(), false, ref_out.get()); for (size_t i = 0; i < 9; i++) { ASSERT_NEAR(sum[i], ref_out->data()[i], 1e-6f); } } #endif TEST(API, matmul_double_grad) { // 1. create tensor auto x = paddle::experimental::full({3, 3}, 1.0); auto y = paddle::experimental::full({3, 3}, 2.0); auto out_grad = paddle::experimental::full({3, 3}, 2.0); auto dx_grad = paddle::experimental::full({3, 3}, 2.0); // 2. test API const auto out = paddle::experimental::matmul_double_grad( x, y, out_grad, dx_grad, {}, false, false); // 3. check result ASSERT_EQ(out.size(), 3UL); ASSERT_EQ(out[0].size(), 1UL); ASSERT_EQ(out[1].size(), 1UL); ASSERT_EQ(out[2].size(), 1UL); ASSERT_EQ(out[0][0].dims()[1], 3); ASSERT_EQ(out[0][0].numel(), 9); ASSERT_EQ(out[1][0].numel(), 9); ASSERT_EQ(out[2][0].numel(), 9); ASSERT_EQ(out[0][0].type(), phi::DataType::FLOAT32); ASSERT_EQ(out[0][0].layout(), phi::DataLayout::NCHW); ASSERT_EQ(out[1][0].initialized(), true); ASSERT_EQ(out[2][0].initialized(), true); } } // namespace tests } // namespace paddle