// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/primitive/backend/static_backend.h" #include "paddle/fluid/ir/dialect/pd_api.h" #include "paddle/fluid/primitive/primitive/primitive.h" #include "paddle/fluid/primitive/type/lazy_tensor.h" namespace paddle { namespace primitive { namespace backend { using LazyTensor = paddle::primitive::LazyTensor; template <> Tensor tanh_grad(const Tensor& out, const Tensor& grad_out) { ir::OpResult out_res = std::static_pointer_cast(out.impl()) ->getValue() .dyn_cast(); ir::OpResult grad_out_res = std::static_pointer_cast(grad_out.impl()) ->getValue() .dyn_cast(); ir::OpResult op_res = paddle::dialect::tanh_grad(out_res, grad_out_res); return Tensor(std::make_shared(op_res)); } template <> Tensor mean_grad(const Tensor& x, const Tensor& out_grad, const IntArray& axis, bool keepdim, bool reduce_all) { ir::OpResult x_res = std::static_pointer_cast(x.impl()) ->getValue() .dyn_cast(); ir::OpResult out_grad_res = std::static_pointer_cast(out_grad.impl()) ->getValue() .dyn_cast(); ir::OpResult op_res = paddle::dialect::mean_grad( x_res, out_grad_res, axis.GetData(), keepdim, reduce_all); return Tensor(std::make_shared(op_res)); } template <> Tensor divide(const Tensor& x, const Tensor& y) { ir::OpResult x_res = std::static_pointer_cast(x.impl()) ->getValue() .dyn_cast(); ir::OpResult y_res = std::static_pointer_cast(y.impl()) ->getValue() .dyn_cast(); ir::OpResult op_res = paddle::dialect::divide(x_res, y_res); return Tensor(std::make_shared(op_res)); } template <> Tensor add(const Tensor& x, const Tensor& y) { ir::OpResult x_res = std::static_pointer_cast(x.impl()) ->getValue() .dyn_cast(); ir::OpResult y_res = std::static_pointer_cast(y.impl()) ->getValue() .dyn_cast(); ir::OpResult op_res = paddle::dialect::add(x_res, y_res); return Tensor(std::make_shared(op_res)); } template <> Tensor multiply(const Tensor& x, const Tensor& y) { ir::OpResult x_res = std::static_pointer_cast(x.impl()) ->getValue() .dyn_cast(); ir::OpResult y_res = std::static_pointer_cast(y.impl()) ->getValue() .dyn_cast(); ir::OpResult op_res = paddle::dialect::multiply(x_res, y_res); return Tensor(std::make_shared(op_res)); } template <> Tensor elementwise_pow(const Tensor& x, const Tensor& y) { ir::OpResult x_res = std::static_pointer_cast(x.impl()) ->getValue() .dyn_cast(); ir::OpResult y_res = std::static_pointer_cast(y.impl()) ->getValue() .dyn_cast(); ir::OpResult op_res = paddle::dialect::elementwise_pow(x_res, y_res); return Tensor(std::make_shared(op_res)); } template <> Tensor scale(const Tensor& x, const Scalar& scale, float bias, bool bias_after_scale) { ir::OpResult x_res = std::static_pointer_cast(x.impl()) ->getValue() .dyn_cast(); ir::OpResult op_res = paddle::dialect::scale(x_res, scale.to(), bias, bias_after_scale); return Tensor(std::make_shared(op_res)); } template <> Tensor sum(const Tensor& x, const IntArray& axis, phi::DataType dtype, bool keepdim) { ir::OpResult x_res = std::static_pointer_cast(x.impl()) ->getValue() .dyn_cast(); ir::OpResult op_res = paddle::dialect::sum(x_res, axis.GetData(), dtype, keepdim); return Tensor(std::make_shared(op_res)); } template <> Tensor full(const IntArray& shape, const Scalar& value, phi::DataType dtype, phi::Place place) { ir::OpResult op_res = paddle::dialect::full(shape.GetData(), value.to(), dtype, place); return Tensor(std::make_shared(op_res)); } template <> std::tuple reshape(const Tensor& x, const IntArray& shape) { ir::OpResult x_res = std::static_pointer_cast(x.impl()) ->getValue() .dyn_cast(); std::tuple op_res = paddle::dialect::reshape(x_res, shape.GetData()); return std::make_tuple( Tensor(std::make_shared(std::get<0>(op_res))), Tensor(std::make_shared(std::get<1>(op_res)))); } template <> Tensor expand(const Tensor& x, const IntArray& shape) { ir::OpResult x_res = std::static_pointer_cast(x.impl()) ->getValue() .dyn_cast(); ir::OpResult op_res = paddle::dialect::expand(x_res, shape.GetData()); return Tensor(std::make_shared(op_res)); } template <> Tensor tile(const Tensor& x, const IntArray& repeat_times) { ir::OpResult x_res = std::static_pointer_cast(x.impl()) ->getValue() .dyn_cast(); ir::OpResult op_res = paddle::dialect::tile(x_res, repeat_times.GetData()); return Tensor(std::make_shared(op_res)); } template <> std::tuple add_grad(const Tensor& x, const Tensor& y, const Tensor& out_grad, int axis) { ir::OpResult x_res = std::static_pointer_cast(x.impl()) ->getValue() .dyn_cast(); ir::OpResult y_res = std::static_pointer_cast(y.impl()) ->getValue() .dyn_cast(); ir::OpResult out_grad_res = std::static_pointer_cast(out_grad.impl()) ->getValue() .dyn_cast(); std::tuple op_res = paddle::dialect::add_grad(x_res, y_res, out_grad_res, axis); return std::make_tuple( Tensor(std::make_shared(std::get<0>(op_res))), Tensor(std::make_shared(std::get<1>(op_res)))); } template <> std::tuple divide_grad(const Tensor& x, const Tensor& y, const Tensor& out, const Tensor& out_grad, int axis) { ir::OpResult x_res = std::static_pointer_cast(x.impl()) ->getValue() .dyn_cast(); ir::OpResult y_res = std::static_pointer_cast(y.impl()) ->getValue() .dyn_cast(); ir::OpResult out_res = std::static_pointer_cast(out.impl()) ->getValue() .dyn_cast(); ir::OpResult out_grad_res = std::static_pointer_cast(out_grad.impl()) ->getValue() .dyn_cast(); std::tuple op_res = paddle::dialect::divide_grad(x_res, y_res, out_res, out_grad_res, axis); return std::make_tuple( Tensor(std::make_shared(std::get<0>(op_res))), Tensor(std::make_shared(std::get<1>(op_res)))); } template <> Tensor sum_grad(const Tensor& x, const Tensor& out_grad, const IntArray& axis, bool keepdim, bool reduce_all) { ir::OpResult x_res = std::static_pointer_cast(x.impl()) ->getValue() .dyn_cast(); ir::OpResult out_grad_res = std::static_pointer_cast(out_grad.impl()) ->getValue() .dyn_cast(); ir::OpResult op_res = paddle::dialect::sum_grad( x_res, out_grad_res, axis.GetData(), keepdim, reduce_all); return Tensor(std::make_shared(op_res)); } } // namespace backend } // namespace primitive } // namespace paddle