# copyright (c) 2018 paddlepaddle authors. all rights reserved. # # licensed under the apache license, version 2.0 (the "license"); # you may not use this file except in compliance with the license. # you may obtain a copy of the license at # # http://www.apache.org/licenses/license-2.0 # # unless required by applicable law or agreed to in writing, software # distributed under the license is distributed on an "as is" basis, # without warranties or conditions of any kind, either express or implied. # see the license for the specific language governing permissions and # limitations under the license. from __future__ import print_function import unittest import paddle.fluid as fluid import six from paddle.fluid.framework import IrGraph from paddle.fluid import core def residual_block(num): def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu', bias_attr=False): tmp = fluid.layers.conv2d( input=input, filter_size=filter_size, num_filters=ch_out, stride=stride, padding=padding, act=None, bias_attr=bias_attr) return fluid.layers.batch_norm(input=tmp, act=act) data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') hidden = data for _ in six.moves.xrange(num): conv = conv_bn_layer(hidden, 16, 3, 1, 1, act=None, bias_attr=True) short = conv_bn_layer(hidden, 16, 1, 1, 0, act=None) hidden = fluid.layers.elementwise_add(x=conv, y=short, act='relu') fc = fluid.layers.fc(input=hidden, size=10) loss = fluid.layers.cross_entropy(input=fc, label=label) loss = fluid.layers.mean(loss) return loss class TestGraph(unittest.TestCase): def test_graph_functions(self, for_ci=True): main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): loss = residual_block(2) opt = fluid.optimizer.Adam(learning_rate=0.001) opt.minimize(loss) graph = IrGraph(core.Graph(main.desc), for_test=False) marked_nodes = set() for op in graph.all_op_nodes(): if op.name().find('conv2d') > -1: marked_nodes.add(op) if not for_ci: graph.draw('.', 'residual', marked_nodes) self.assertFalse(graph.has_circle()) self.assertEqual(graph.graph_num(), 1) nodes = graph.topology_sort() self.assertEqual(len(nodes), len(graph.all_op_nodes())) nodes_map = graph.build_adjacency_list() self.assertEqual(len(nodes_map), len(graph.all_op_nodes())) nodes_num = len(graph.all_nodes()) graph.safe_remove_nodes(marked_nodes) self.assertEqual(len(graph.all_nodes()), nodes_num - len(marked_nodes)) backup_graph = graph.clone() self.assertEqual(len(graph.all_nodes()), len(backup_graph.all_nodes())) if not for_ci: backup_marked_nodes = set() for op in backup_graph.all_op_nodes(): if op.name().find('conv2d') > -1: backup_marked_nodes.add(op) backup_graph.draw('.', 'backup', backup_marked_nodes) if __name__ == '__main__': unittest.main()