# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: define statistical functions of a tensor import paddle from paddle import _C_ops, _ir_ops, ir from paddle.framework import in_dynamic_mode from ..common_ops_import import Variable from ..fluid.data_feeder import check_type, check_variable_and_dtype from ..framework import LayerHelper, core from .math import _get_reduce_axis_with_tensor from .search import where __all__ = [] def mean(x, axis=None, keepdim=False, name=None): """ Computes the mean of the input tensor's elements along ``axis``. Args: x (Tensor): The input Tensor with data type float32, float64. axis (int|list|tuple, optional): The axis along which to perform mean calculations. ``axis`` should be int, list(int) or tuple(int). If ``axis`` is a list/tuple of dimension(s), mean is calculated along all element(s) of ``axis`` . ``axis`` or element(s) of ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is less than 0, it works the same way as :math:`axis + D` . If ``axis`` is None, mean is calculated over all elements of ``x``. Default is None. keepdim (bool, optional): Whether to reserve the reduced dimension(s) in the output Tensor. If ``keepdim`` is True, the dimensions of the output Tensor is the same as ``x`` except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed in ``axis`` . Default is False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, results of average along ``axis`` of ``x``, with the same data type as ``x``. Examples: .. code-block:: python >>> import paddle >>> x = paddle.to_tensor([[[1., 2., 3., 4.], ... [5., 6., 7., 8.], ... [9., 10., 11., 12.]], ... [[13., 14., 15., 16.], ... [17., 18., 19., 20.], ... [21., 22., 23., 24.]]]) >>> out1 = paddle.mean(x) >>> print(out1.numpy()) 12.5 >>> out2 = paddle.mean(x, axis=-1) >>> print(out2.numpy()) [[ 2.5 6.5 10.5] [14.5 18.5 22.5]] >>> out3 = paddle.mean(x, axis=-1, keepdim=True) >>> print(out3.numpy()) [[[ 2.5] [ 6.5] [10.5]] [[14.5] [18.5] [22.5]]] >>> out4 = paddle.mean(x, axis=[0, 2]) >>> print(out4.numpy()) [ 8.5 12.5 16.5] """ if in_dynamic_mode(): return _C_ops.mean(x, axis, keepdim) else: if ir.core._use_new_ir_api(): return _ir_ops.mean(x, axis, keepdim) reduce_all, axis = _get_reduce_axis_with_tensor(axis, x) check_variable_and_dtype( x, 'x/input', ['uint16', 'float16', 'float32', 'float64'], 'mean/reduce_mean', ) check_type( axis, 'axis/dim', (int, list, tuple, Variable), 'mean/reduce_mean' ) if isinstance(axis, (list, tuple)): for item in axis: check_type( item, 'elements of axis/dim', (int, Variable), 'mean/reduce_mean', ) helper = LayerHelper('mean', **locals()) attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all} out = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='reduce_mean', inputs={'X': x}, outputs={'Out': out}, attrs=attrs, ) return out def var(x, axis=None, unbiased=True, keepdim=False, name=None): """ Computes the variance of ``x`` along ``axis`` . Args: x (Tensor): The input Tensor with data type float16, float32, float64. axis (int|list|tuple, optional): The axis along which to perform variance calculations. ``axis`` should be int, list(int) or tuple(int). - If ``axis`` is a list/tuple of dimension(s), variance is calculated along all element(s) of ``axis`` . ``axis`` or element(s) of ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . - If ``axis`` or element(s) of ``axis`` is less than 0, it works the same way as :math:`axis + D` . - If ``axis`` is None, variance is calculated over all elements of ``x``. Default is None. unbiased (bool, optional): Whether to use the unbiased estimation. If ``unbiased`` is True, the divisor used in the computation is :math:`N - 1`, where :math:`N` represents the number of elements along ``axis`` , otherwise the divisor is :math:`N`. Default is True. keep_dim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the input unless keep_dim is true. Default is False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, results of variance along ``axis`` of ``x``, with the same data type as ``x``. Examples: .. code-block:: python >>> import paddle >>> x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]]) >>> out1 = paddle.var(x) >>> print(out1.numpy()) 2.6666667 >>> out2 = paddle.var(x, axis=1) >>> print(out2.numpy()) [1. 4.3333335] """ if not in_dynamic_mode(): check_variable_and_dtype( x, 'x', ['float16', 'float32', 'float64'], 'var' ) u = mean(x, axis, True, name) out = paddle.sum(paddle.pow((x - u), 2), axis, keepdim=keepdim, name=name) dtype = x.dtype n = paddle.cast(paddle.numel(x), paddle.int64) / paddle.cast( paddle.numel(out), paddle.int64 ) n = n.astype(dtype) if unbiased: one_const = paddle.ones([], x.dtype) n = where(n > one_const, n - 1.0, one_const) n.stop_gradient = True out /= n return out def std(x, axis=None, unbiased=True, keepdim=False, name=None): """ Computes the standard-deviation of ``x`` along ``axis`` . Args: x (Tensor): The input Tensor with data type float16, float32, float64. axis (int|list|tuple, optional): The axis along which to perform standard-deviation calculations. ``axis`` should be int, list(int) or tuple(int). If ``axis`` is a list/tuple of dimension(s), standard-deviation is calculated along all element(s) of ``axis`` . ``axis`` or element(s) of ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is less than 0, it works the same way as :math:`axis + D` . If ``axis`` is None, standard-deviation is calculated over all elements of ``x``. Default is None. unbiased (bool, optional): Whether to use the unbiased estimation. If ``unbiased`` is True, the standard-deviation is calculated via the unbiased estimator. If ``unbiased`` is True, the divisor used in the computation is :math:`N - 1`, where :math:`N` represents the number of elements along ``axis`` , otherwise the divisor is :math:`N`. Default is True. keepdim (bool, optional): Whether to reserve the reduced dimension(s) in the output Tensor. If ``keepdim`` is True, the dimensions of the output Tensor is the same as ``x`` except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed in ``axis`` . Default is False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, results of standard-deviation along ``axis`` of ``x``, with the same data type as ``x``. Examples: .. code-block:: python >>> import paddle >>> x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]]) >>> out1 = paddle.std(x) >>> print(out1.numpy()) 1.6329932 >>> out2 = paddle.std(x, unbiased=False) >>> print(out2.numpy()) 1.490712 >>> out3 = paddle.std(x, axis=1) >>> print(out3.numpy()) [1. 2.081666] """ if not in_dynamic_mode(): check_variable_and_dtype( x, 'x', ['float16', 'float32', 'float64'], 'std' ) out = var(**locals()) return paddle.sqrt(out) def numel(x, name=None): """ Returns the number of elements for a tensor, which is a 0-D int64 Tensor with shape []. Args: x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64, complex64, complex128. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: The number of elements for the input Tensor, whose shape is []. Examples: .. code-block:: python >>> import paddle >>> x = paddle.full(shape=[4, 5, 7], fill_value=0, dtype='int32') >>> numel = paddle.numel(x) >>> print(numel.numpy()) 140 """ if in_dynamic_mode(): return _C_ops.numel(x) else: if not isinstance(x, Variable): raise TypeError("x must be a Tensor in numel") helper = LayerHelper('numel', **locals()) out = helper.create_variable_for_type_inference( dtype=core.VarDesc.VarType.INT64 ) helper.append_op(type='size', inputs={'Input': x}, outputs={'Out': out}) return out def nanmedian(x, axis=None, keepdim=False, name=None): r""" Compute the median along the specified axis, while ignoring NaNs. If the valid count of elements is a even number, the average value of both elements in the middle is calculated as the median. Args: x (Tensor): The input Tensor, it's data type can be int32, int64, float16, bfloat16, float32, float64. axis (None|int|list|tuple, optional): The axis along which to perform median calculations ``axis`` should be int or list of int. ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` is less than 0, it works the same way as :math:`axis + D`. If ``axis`` is None, median is calculated over all elements of ``x``. Default is None. keepdim (bool, optional): Whether to reserve the reduced dimension(s) in the output Tensor. If ``keepdim`` is True, the dimensions of the output Tensor is the same as ``x`` except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed in ``axis`` . Default is False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, results of median along ``axis`` of ``x``. The output dtype is the same as `x`. Examples: .. code-block:: python >>> import paddle >>> x = paddle.to_tensor([[float('nan'), 2. , 3. ], [0. , 1. , 2. ]]) >>> y1 = x.nanmedian() >>> print(y1.numpy()) 2.0 >>> y2 = x.nanmedian(0) >>> print(y2.numpy()) [0. 1.5 2.5] >>> y3 = x.nanmedian(0, keepdim=True) >>> print(y3.numpy()) [[0. 1.5 2.5]] >>> y4 = x.nanmedian((0, 1)) >>> print(y4.numpy()) 2.0 """ if not isinstance(x, Variable): raise TypeError("In median, the input x should be a Tensor.") if isinstance(axis, (list, tuple)) and len(axis) == 0: raise ValueError("Axis list should not be empty.") if axis is None: axis = [] elif isinstance(axis, tuple): axis = list(axis) elif isinstance(axis, int): axis = [axis] if in_dynamic_mode(): return _C_ops.nanmedian(x, axis, keepdim) else: check_variable_and_dtype( x, 'X', ['int32', 'int64', 'float16', 'float32', 'float64', 'uint16'], 'nanmedian', ) helper = LayerHelper('nanmedian', **locals()) attrs = {'axis': axis, 'keepdim': keepdim} out = helper.create_variable_for_type_inference(x.dtype) medians = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='nanmedian', inputs={'X': x}, outputs={'Out': out, 'MedianIndex': medians}, attrs=attrs, ) return out def median(x, axis=None, keepdim=False, name=None): """ Compute the median along the specified axis. Args: x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64. axis (int, optional): The axis along which to perform median calculations ``axis`` should be int. ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` is less than 0, it works the same way as :math:`axis + D`. If ``axis`` is None, median is calculated over all elements of ``x``. Default is None. keepdim (bool, optional): Whether to reserve the reduced dimension(s) in the output Tensor. If ``keepdim`` is True, the dimensions of the output Tensor is the same as ``x`` except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed in ``axis`` . Default is False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, results of median along ``axis`` of ``x``. If data type of ``x`` is float64, data type of results will be float64, otherwise data type will be float32. Examples: .. code-block:: python >>> import paddle >>> x = paddle.arange(12).reshape([3, 4]) >>> print(x) Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True, [[0 , 1 , 2 , 3 ], [4 , 5 , 6 , 7 ], [8 , 9 , 10, 11]]) >>> y1 = paddle.median(x) >>> print(y1) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 5.50000000) >>> y2 = paddle.median(x, axis=0) >>> print(y2) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [4., 5., 6., 7.]) >>> y3 = paddle.median(x, axis=1) >>> print(y3) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [1.50000000, 5.50000000, 9.50000000]) >>> y4 = paddle.median(x, axis=0, keepdim=True) >>> print(y4) Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[4., 5., 6., 7.]]) """ if not isinstance(x, Variable): raise TypeError("In median, the input x should be a Tensor.") if x.size == 0: raise ValueError("In median, the size of input x should not be 0.") is_flatten = False dims = len(x.shape) if dims == 0: assert axis in [ -1, 0, None, ], 'when input 0-D, axis can only be [-1, 0] or default None' is_flatten = True if axis is None: is_flatten = True if is_flatten: x = paddle.flatten(x) axis = 0 else: if not isinstance(axis, int) or not (axis < dims and axis >= -dims): raise ValueError( "In median, axis should be none or an integer in range [-rank(x), rank(x))." ) if axis < 0: axis += dims sz = x.shape[axis] kth = sz >> 1 tensor_topk, idx = paddle.topk(x, kth + 1, axis=axis, largest=False) dtype = 'float64' if x.dtype == core.VarDesc.VarType.FP64 else 'float32' if sz & 1 == 0: out_tensor = paddle.slice( tensor_topk, axes=[axis], starts=[kth - 1], ends=[kth] ) + paddle.slice(tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1]) out_tensor = paddle.cast(out_tensor, dtype=dtype) / 2 else: out_tensor = paddle.cast( paddle.slice( tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1] ), dtype=dtype, ) out_tensor = out_tensor + paddle.sum( paddle.cast(paddle.isnan(x), dtype=dtype) * x, axis=axis, keepdim=True ) if is_flatten: if keepdim: out_tensor = out_tensor.reshape([1] * dims) else: out_tensor = out_tensor.reshape([]) else: if not keepdim: out_tensor = out_tensor.squeeze(axis) return out_tensor def _compute_quantile(x, q, axis=None, keepdim=False, ignore_nan=False): """ Compute the quantile of the input along the specified axis. Args: x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64. q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list, each q will be calculated and the first dimension of output is same to the number of ``q`` . axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int. ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` is less than 0, it works the same way as :math:`axis + D`. If ``axis`` is a list, quantile is calculated over all elements of given axises. If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None. keepdim (bool, optional): Whether to reserve the reduced dimension(s) in the output Tensor. If ``keepdim`` is True, the dimensions of the output Tensor is the same as ``x`` except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed in ``axis`` . Default is False. ignore_nan: (bool, optional): Whether to ignore NaN of input Tensor. If ``ignore_nan`` is True, it will calculate nanquantile. Otherwise it will calculate quantile. Default is False. Returns: Tensor, results of quantile along ``axis`` of ``x``. In order to obtain higher precision, data type of results will be float64. """ # Validate x if not isinstance(x, Variable): raise TypeError("input x should be a Tensor.") # Validate q if isinstance(q, (int, float)): q = [q] elif isinstance(q, (list, tuple)): if len(q) <= 0: raise ValueError("q should not be empty") else: raise TypeError("Type of q should be int, float, list or tuple.") # Validate axis dims = len(x.shape) out_shape = list(x.shape) if axis is None: x = paddle.flatten(x) axis = 0 out_shape = [1] * dims else: if isinstance(axis, list): axis_src, axis_dst = [], [] for axis_single in axis: if not isinstance(axis_single, int) or not ( axis_single < dims and axis_single >= -dims ): raise ValueError( "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))." ) if axis_single < 0: axis_single = axis_single + dims axis_src.append(axis_single) out_shape[axis_single] = 1 axis_dst = list(range(-len(axis), 0)) x = paddle.moveaxis(x, axis_src, axis_dst) if len(axis_dst) == 0: x = paddle.flatten(x) axis = 0 else: x = paddle.flatten(x, axis_dst[0], axis_dst[-1]) axis = axis_dst[0] else: if not isinstance(axis, int) or not (axis < dims and axis >= -dims): raise ValueError( "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))." ) if axis < 0: axis += dims out_shape[axis] = 1 mask = x.isnan() valid_counts = mask.logical_not().sum( axis=axis, keepdim=True, dtype='float64' ) indices = [] for q_num in q: if q_num < 0 or q_num > 1: raise ValueError("q should be in range [0, 1]") if in_dynamic_mode(): q_num = paddle.to_tensor(q_num, dtype='float64') if ignore_nan: indices.append(q_num * (valid_counts - 1)) else: # TODO: Use paddle.index_fill instead of where index = q_num * (valid_counts - 1) last_index = x.shape[axis] - 1 nums = paddle.full_like(index, fill_value=last_index) index = paddle.where(mask.any(axis=axis, keepdim=True), nums, index) indices.append(index) sorted_tensor = paddle.sort(x, axis) outputs = [] # TODO(chenjianye): replace the for-loop to directly take elements. for index in indices: indices_below = paddle.floor(index).astype(paddle.int32) indices_upper = paddle.ceil(index).astype(paddle.int32) tensor_upper = paddle.take_along_axis( sorted_tensor, indices_upper, axis=axis ) tensor_below = paddle.take_along_axis( sorted_tensor, indices_below, axis=axis ) weights = index - indices_below.astype('float64') out = paddle.lerp( tensor_below.astype('float64'), tensor_upper.astype('float64'), weights, ) if not keepdim: out = paddle.squeeze(out, axis=axis) else: out = out.reshape(out_shape) outputs.append(out) if len(q) > 1: outputs = paddle.stack(outputs, 0) else: outputs = outputs[0] return outputs def quantile(x, q, axis=None, keepdim=False): """ Compute the quantile of the input along the specified axis. If any values in a reduced row are NaN, then the quantiles for that reduction will be NaN. Args: x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64. q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list, each q will be calculated and the first dimension of output is same to the number of ``q`` . axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int. ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` is less than 0, it works the same way as :math:`axis + D`. If ``axis`` is a list, quantile is calculated over all elements of given axises. If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None. keepdim (bool, optional): Whether to reserve the reduced dimension(s) in the output Tensor. If ``keepdim`` is True, the dimensions of the output Tensor is the same as ``x`` except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed in ``axis`` . Default is False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, results of quantile along ``axis`` of ``x``. In order to obtain higher precision, data type of results will be float64. Examples: .. code-block:: python >>> import paddle >>> y = paddle.arange(0, 8 ,dtype="float32").reshape([4, 2]) >>> print(y) Tensor(shape=[4, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[0., 1.], [2., 3.], [4., 5.], [6., 7.]]) >>> y1 = paddle.quantile(y, q=0.5, axis=[0, 1]) >>> print(y1) Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True, 3.50000000) >>> y2 = paddle.quantile(y, q=0.5, axis=1) >>> print(y2) Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=True, [0.50000000, 2.50000000, 4.50000000, 6.50000000]) >>> y3 = paddle.quantile(y, q=[0.3, 0.5], axis=0) >>> print(y3) Tensor(shape=[2, 2], dtype=float64, place=Place(cpu), stop_gradient=True, [[1.80000000, 2.80000000], [3. , 4. ]]) >>> y[0,0] = float("nan") >>> y4 = paddle.quantile(y, q=0.8, axis=1, keepdim=True) >>> print(y4) Tensor(shape=[4, 1], dtype=float64, place=Place(cpu), stop_gradient=True, [[nan ], [2.80000000], [4.80000000], [6.80000000]]) """ return _compute_quantile(x, q, axis=axis, keepdim=keepdim, ignore_nan=False) def nanquantile(x, q, axis=None, keepdim=False): """ Compute the quantile of the input as if NaN values in input did not exist. If all values in a reduced row are NaN, then the quantiles for that reduction will be NaN. Args: x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64. q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list, each q will be calculated and the first dimension of output is same to the number of ``q`` . axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int. ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` is less than 0, it works the same way as :math:`axis + D`. If ``axis`` is a list, quantile is calculated over all elements of given axises. If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None. keepdim (bool, optional): Whether to reserve the reduced dimension(s) in the output Tensor. If ``keepdim`` is True, the dimensions of the output Tensor is the same as ``x`` except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed in ``axis`` . Default is False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, results of quantile along ``axis`` of ``x``. In order to obtain higher precision, data type of results will be float64. Examples: .. code-block:: python >>> import paddle >>> x = paddle.to_tensor( ... [[0, 1, 2, 3, 4], ... [5, 6, 7, 8, 9]], ... dtype="float32") >>> x[0,0] = float("nan") >>> y1 = paddle.nanquantile(x, q=0.5, axis=[0, 1]) >>> print(y1) Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True, 5.) >>> y2 = paddle.nanquantile(x, q=0.5, axis=1) >>> print(y2) Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True, [2.50000000, 7. ]) >>> y3 = paddle.nanquantile(x, q=[0.3, 0.5], axis=0) >>> print(y3) Tensor(shape=[2, 5], dtype=float64, place=Place(cpu), stop_gradient=True, [[5. , 2.50000000, 3.50000000, 4.50000000, 5.50000000], [5. , 3.50000000, 4.50000000, 5.50000000, 6.50000000]]) >>> y4 = paddle.nanquantile(x, q=0.8, axis=1, keepdim=True) >>> print(y4) Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=True, [[3.40000000], [8.20000000]]) >>> nan = paddle.full(shape=[2, 3], fill_value=float("nan")) >>> y5 = paddle.nanquantile(nan, q=0.8, axis=1, keepdim=True) >>> print(y5) Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=True, [[nan], [nan]]) """ return _compute_quantile(x, q, axis=axis, keepdim=keepdim, ignore_nan=True)