# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import gradient_checker import numpy as np from decorator_helper import prog_scope from eager_op_test import ( OpTest, convert_float_to_uint16, convert_uint16_to_float, ) import paddle from paddle import fluid from paddle.fluid import Program, core, program_guard def cast_wrapper(x, out_dtype=None): return paddle.cast(x, paddle.dtype(out_dtype)) class TestCastOpFp32ToFp64(OpTest): def setUp(self): ipt = np.random.random(size=[10, 10]) self.inputs = {'X': ipt.astype('float32')} self.outputs = {'Out': ipt.astype('float64')} self.attrs = { 'in_dtype': int(core.VarDesc.VarType.FP32), 'out_dtype': int(core.VarDesc.VarType.FP64), } self.op_type = 'cast' self.prim_op_type = "prim" self.python_api = cast_wrapper self.public_python_api = cast_wrapper def test_check_output(self): self.check_output() def test_grad(self): self.check_grad(['X'], ['Out'], check_prim=True) class TestCastOpFp16ToFp32(OpTest): def setUp(self): ipt = np.random.random(size=[10, 10]) self.inputs = {'X': ipt.astype('float16')} self.outputs = {'Out': ipt.astype('float32')} self.attrs = { 'in_dtype': int(core.VarDesc.VarType.FP16), 'out_dtype': int(core.VarDesc.VarType.FP32), } self.op_type = 'cast' self.prim_op_type = "prim" self.python_api = cast_wrapper self.public_python_api = cast_wrapper def test_check_output(self): self.check_output() def test_grad(self): self.check_grad(['X'], ['Out'], check_prim=True, only_check_prim=True) class TestCastOpFp32ToFp16(OpTest): def setUp(self): ipt = np.random.random(size=[10, 10]) self.inputs = {'X': ipt.astype('float32')} self.outputs = {'Out': ipt.astype('float16')} self.attrs = { 'in_dtype': int(core.VarDesc.VarType.FP32), 'out_dtype': int(core.VarDesc.VarType.FP16), } self.op_type = 'cast' self.prim_op_type = "prim" self.python_api = cast_wrapper self.public_python_api = cast_wrapper def test_check_output(self): self.check_output() def test_grad(self): self.check_grad(['X'], ['Out'], check_prim=True, only_check_prim=True) @unittest.skipIf( not paddle.is_compiled_with_cuda() or paddle.is_compiled_with_rocm(), "BFP16 test runs only on CUDA", ) class TestCastOpBf16ToFp32(OpTest): def setUp(self): ipt = np.array(np.random.randint(10, size=[10, 10])).astype('uint16') self.inputs = {'X': ipt} self.outputs = {'Out': convert_uint16_to_float(ipt)} self.attrs = { 'in_dtype': int(core.VarDesc.VarType.BF16), 'out_dtype': int(core.VarDesc.VarType.FP32), } self.op_type = 'cast' self.prim_op_type = "prim" self.python_api = cast_wrapper self.public_python_api = cast_wrapper self.if_enable_cinn() def if_enable_cinn(self): self.enable_cinn = False def test_check_output(self): self.check_output() def test_grad(self): self.check_grad(['X'], ['Out'], check_prim=True, only_check_prim=True) @unittest.skipIf( not paddle.is_compiled_with_cuda() or paddle.is_compiled_with_rocm(), "BFP16 test runs only on CUDA", ) class TestCastOpFp32ToBf16(OpTest): def setUp(self): ipt = np.random.random(size=[10, 10]).astype('float32') self.inputs = {'X': ipt} self.outputs = {'Out': convert_float_to_uint16(ipt)} self.attrs = { 'in_dtype': int(core.VarDesc.VarType.FP32), 'out_dtype': int(core.VarDesc.VarType.BF16), } self.op_type = 'cast' self.prim_op_type = "prim" self.python_api = cast_wrapper self.public_python_api = cast_wrapper self.if_enable_cinn() def if_enable_cinn(self): self.enable_cinn = False def test_check_output(self): self.check_output() def test_grad(self): self.check_grad(['X'], ['Out'], check_prim=True, only_check_prim=True) class TestCastOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): # The input type of cast_op must be Variable. x1 = fluid.create_lod_tensor( np.array([[-1]]), [[1]], fluid.CPUPlace() ) self.assertRaises(TypeError, paddle.cast, x1, 'int32') class TestCastOpEager(unittest.TestCase): def test_eager(self): with paddle.fluid.dygraph.base.guard(): x = paddle.ones([2, 2], dtype="float16") x.stop_gradient = False out = paddle.cast(x, "float32") np.testing.assert_array_equal( out, np.ones([2, 2]).astype('float32') ) out.backward() np.testing.assert_array_equal(x.gradient(), x.numpy()) self.assertTrue(x.gradient().dtype == np.float16) class TestCastDoubleGradCheck(unittest.TestCase): def cast_wrapper(self, x): return paddle.cast(x[0], 'float64') @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. eps = 0.005 dtype = np.float32 data = paddle.static.data('data', [2, 3, 4], dtype) data.persistable = True out = paddle.cast(data, 'float64') data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype) gradient_checker.double_grad_check( [data], out, x_init=[data_arr], place=place, eps=eps ) gradient_checker.double_grad_check_for_dygraph( self.cast_wrapper, [data], out, x_init=[data_arr], place=place ) def test_grad(self): paddle.enable_static() places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestCastTripleGradCheck(unittest.TestCase): def cast_wrapper(self, x): return paddle.cast(x[0], 'float64') @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. eps = 0.005 dtype = np.float32 data = paddle.static.data('data', [2, 3, 4], dtype) data.persistable = True out = paddle.cast(data, 'float64') data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype) gradient_checker.triple_grad_check( [data], out, x_init=[data_arr], place=place, eps=eps ) gradient_checker.triple_grad_check_for_dygraph( self.cast_wrapper, [data], out, x_init=[data_arr], place=place ) def test_grad(self): paddle.enable_static() places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) if __name__ == '__main__': paddle.enable_static() unittest.main()