# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import numpy as np import unittest class TestReshape(unittest.TestCase): """ Test the API paddle.incubate.sparse.reshape on some sparse tensors. x: sparse, out: sparse """ def check_result(self, x_shape, new_shape, format): """ x_shape: original shape new_shape: new shape format: "coo" or "csr" Transform a sparse tensor with shape "x_shape" to a sparse tensor with shape "new_shape". Compare the output of paddle.reshape and the output of paddle.incubate.sparse.reshape. """ mask = np.random.randint(0, 2, x_shape) np_x = np.random.randint(-100, 100, x_shape) * mask # check cpu kernel dense_x = paddle.to_tensor(np_x, place=paddle.CPUPlace()) dense_x.stop_gradient = False dense_out = paddle.reshape(dense_x, new_shape) if format == "coo": sp_x = paddle.to_tensor(np_x, place=paddle.CPUPlace()).to_sparse_coo( len(x_shape)) else: sp_x = paddle.to_tensor(np_x, place=paddle.CPUPlace()).to_sparse_csr() sp_x.stop_gradient = False sp_out = paddle.incubate.sparse.reshape(sp_x, new_shape) np.testing.assert_allclose(sp_out.to_dense().numpy(), dense_out.numpy(), rtol=1e-05) dense_out.backward() sp_out.backward() np.testing.assert_allclose(sp_x.grad.to_dense().numpy(), dense_x.grad.numpy() * np_x.astype('bool').astype('int'), rtol=1e-05) # check gpu kernel if paddle.device.is_compiled_with_cuda(): dense_x = paddle.to_tensor(np_x, place=paddle.CUDAPlace(0)) dense_x.stop_gradient = False dense_out = paddle.reshape(dense_x, new_shape) if format == "coo": sp_x = paddle.to_tensor( np_x, place=paddle.CUDAPlace(0)).to_sparse_coo(len(x_shape)) else: sp_x = paddle.to_tensor( np_x, place=paddle.CUDAPlace(0)).to_sparse_csr() sp_x.stop_gradient = False sp_out = paddle.incubate.sparse.reshape(sp_x, new_shape) np.testing.assert_allclose(sp_out.to_dense().numpy(), dense_out.numpy(), rtol=1e-05) dense_out.backward() sp_out.backward() np.testing.assert_allclose(sp_x.grad.to_dense().numpy(), dense_x.grad.numpy() * np_x.astype('bool').astype('int'), rtol=1e-05) def test_reshape_2d(self): self.check_result([2, 5], [ 10, ], 'coo') self.check_result([12, 5], [15, 4], 'coo') self.check_result([10, 5], [2, 25], 'csr') self.check_result([9, 8], [18, 4], 'csr') def test_reshape_3d(self): self.check_result([6, 2, 3], [6, 2, 3], 'coo') self.check_result([6, 2, 3], [2, 3, 3, 2], 'coo') self.check_result([6, 2, 3], [1, 18, 2], 'coo') self.check_result([6, 2, 3], [2, 9, 2], 'coo') self.check_result([6, 2, 3], [2, 1, 18], 'coo') self.check_result([6, 2, 3], [1, 2, 2, 3, 3], 'coo') self.check_result([6, 2, 3], [6, 2, 3], 'csr') self.check_result([6, 2, 3], [6, 3, 2], 'csr') self.check_result([6, 2, 3], [2, 6, 3], 'csr') self.check_result([6, 2, 3], [3, 6, 2], 'csr') self.check_result([6, 2, 3], [4, 9, 1], 'csr') self.check_result([6, 2, 3], [12, 1, 3], 'csr') def test_reshape_nd(self): self.check_result([8, 3, 4, 4, 5, 3], [24, 8, 10, 3], 'coo') self.check_result([3, 4, 4, 5, 7], [1, 12, 2, 5, 14], 'coo') def test_reshape_with_zero_or_minus_one_in_new_shape(self): self.check_result([6, 2, 3], [-1, 0, 3], 'coo') self.check_result([6, 2, 3], [2, 3, 0, -1], 'coo') self.check_result([6, 2, 3], [1, -1, 2], 'coo') self.check_result([6, 2, 3], [-1, 9, 2], 'coo') self.check_result([6, 2, 3], [2, -1, 18], 'coo') self.check_result([6, 2, 3], [1, 0, 2, -1, 3], 'coo') self.check_result([6, 2, 3], [0, 0, -1], 'csr') self.check_result([6, 2, 3], [-1, 3, 2], 'csr') self.check_result([6, 2, 3], [2, -1, 0], 'csr') self.check_result([6, 2, 3], [-1, 6, 2], 'csr') self.check_result([6, 2, 3], [-1, 9, 1], 'csr') self.check_result([6, 2, 3], [-1, 1, 3], 'csr') if __name__ == "__main__": unittest.main()