// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include // NOLINT #include #include #include // NOLINT #include // NOLINT #include #include "paddle/fluid/memory/allocation/allocator.h" namespace paddle { namespace memory { namespace allocation { // The AutoIncrementAllocator manages many underlying allocators. If none of // them can allocate the request memory, a new allocator will be created and // invoke its `allocate` method. // // NOTE(yy): The AutoIncrementAllocator will prefer to allocate memory from // the latest sucessful allocator. // // NOTE(yy): We may need to release an underlying allocator if it allocate // nothing. However, it is generally not useful, since it will make performance // undetermined. // // NOTE(yy): This allocator is only locked when creating new underlying // allocator. The allocation requests from many threads may be dispatched // to the same underlying allocator. So the underlying allocator must be // thread safe. // // NOTE(zjl): Add capacity parameters to constructor. A high-performance // thread-safe std::vector with varying size is hard to implement. // Fortunately, we can get the total GPU memory and each chunk size. // Therefore, we can get the suitable capacity of AutoIncrementAllocator. class AutoIncrementAllocator : public ManagedAllocator { public: // Creator is the method to create ManagedAllocator using AllocatorCreator = std::function()>; explicit AutoIncrementAllocator(AllocatorCreator&& creator, size_t capacity) : creator_(std::move(creator)), underlying_allocators_(capacity) {} std::unique_ptr Allocate(size_t size, Attr attr) override; std::shared_ptr AllocateShared(size_t size, Attr attr) override; bool IsAllocThreadSafe() const override; private: // NOTE: here use template Callback, it can be inlined when -O3 template inline typename std::result_of::type InvokeOrCreateUnderlyingAllocator(Callback callback) { auto cur = prev_success_allocator_.load(); size_t retry_count = allocator_num_.load(); size_t allocator_num = retry_count; while (retry_count-- > 0) { // until there retry count is zero try { auto res = callback(*underlying_allocators_[cur]); prev_success_allocator_ = cur; return std::move(res); } catch (BadAlloc&) { if (++cur >= allocator_num) { cur = 0; } } catch (...) { // if there is another type of allocation, just rethrow it. std::rethrow_exception(std::current_exception()); } } // No suitable allocator // This happens when the first allocator is exhausted and // there are more than 1 allocation requests // In this situation, the first allocation request would success // and the second allocation request would fail if we do not use // the newly created allocator by the first allocation request. for (size_t new_allocator_num = allocator_num_.load(); allocator_num < new_allocator_num; ++allocator_num) { try { auto ret = callback(*underlying_allocators_[allocator_num]); prev_success_allocator_ = allocator_num; return std::move(ret); } catch (BadAlloc&) { } catch (...) { std::rethrow_exception(std::current_exception()); } } ManagedAllocator* new_allocator; { std::lock_guard guard(mtx_); auto old_size = allocator_num_.load(); PADDLE_ENFORCE_LT(old_size, underlying_allocators_.size(), "Allocator number exceeds capacity %d", underlying_allocators_.size()); underlying_allocators_[old_size] = creator_(); new_allocator = underlying_allocators_[old_size].get(); prev_success_allocator_ = old_size; allocator_num_.fetch_add(1); } PADDLE_ENFORCE( new_allocator->IsAllocThreadSafe(), "the underlying allocator must be thread safe. This is a program " "bug."); return callback(*new_allocator); } AllocatorCreator creator_; std::vector underlying_allocators_; std::atomic allocator_num_{0}; // Use std::atomic rather than std::mutex, since std::atomic is usually // lock-free std::atomic prev_success_allocator_{0}; std::mutex mtx_; }; } // namespace allocation } // namespace memory } // namespace paddle