// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/pten/kernels/trace_kernel.h" #include "paddle/pten/backends/cpu/cpu_context.h" #include "paddle/pten/core/kernel_registry.h" #include "paddle/pten/kernels/funcs/diagonal.h" #include "paddle/pten/kernels/funcs/eigen/common.h" namespace pten { template void TraceKernel(const Context& dev_ctx, const DenseTensor& x, int offset, int axis1, int axis2, DenseTensor* out) { auto* out_data = dev_ctx.template Alloc(out); const DenseTensor diag = funcs::Diagonal(dev_ctx, &x, offset, axis1, axis2); if (diag.numel() > 0) { auto x = pten::EigenMatrix::Reshape(diag, diag.dims().size() - 1); auto output = pten::EigenVector::Flatten(*out); auto reduce_dim = Eigen::array({1}); output.device(*dev_ctx.eigen_device()) = x.sum(reduce_dim); out->Resize(out->dims()); } else { std::fill(out_data, out_data + out->numel(), static_cast(0)); } } } // namespace pten PT_REGISTER_KERNEL(trace, CPU, ALL_LAYOUT, pten::TraceKernel, float, double, int, int64_t, pten::dtype::float16, pten::dtype::complex, pten::dtype::complex) {}