/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once /** * This file provides a TensorCheck template function, which can be used to * compare CpuMatrix and GpuMatrix, CpuVector and GpuVector, and so on. */ #include #include "paddle/math/Matrix.h" namespace autotest { using paddle::Matrix; using paddle::CpuMatrix; using paddle::GpuMatrix; using paddle::VectorT; using paddle::CpuVectorT; using paddle::GpuVectorT; class AssertEqual { public: AssertEqual(real err = 0) : err_(err) {} inline bool operator()(real a, real b) { if (err_ == 0) { if (a != b) { return false; } } else { if (std::fabs(a - b) > err_) { if ((std::fabs(a - b) / std::fabs(a)) > (err_ / 10.0f)) { return false; } } } return true; } private: real err_; }; template class CopyToCpu; template <> class CopyToCpu { public: explicit CopyToCpu(const CpuMatrix& arg) : arg_(arg) {} const CpuMatrix& copiedArg() const { return arg_; } private: const CpuMatrix& arg_; }; template <> class CopyToCpu { public: explicit CopyToCpu(const GpuMatrix& arg) : arg_(arg.getHeight(), arg.getWidth()) { arg_.copyFrom(arg); } CpuMatrix& copiedArg() { return arg_; } private: CpuMatrix arg_; }; template <> class CopyToCpu { public: explicit CopyToCpu(const Matrix& arg) : arg_(arg.getHeight(), arg.getWidth()) { arg_.copyFrom(arg); } CpuMatrix& copiedArg() { return arg_; } private: CpuMatrix arg_; }; template class CopyToCpu> { public: explicit CopyToCpu(const CpuVectorT& arg) : arg_(arg) {} const CpuVectorT& copiedArg() const { return arg_; } private: const CpuVectorT& arg_; }; template class CopyToCpu> { public: explicit CopyToCpu(const GpuVectorT& arg) : arg_(arg.getSize()) { arg_.copyFrom(arg); } CpuVectorT& copiedArg() { return arg_; } private: CpuVectorT arg_; }; template class CopyToCpu> { public: explicit CopyToCpu(const VectorT& arg) : arg_(arg.getSize()) { arg_.copyFrom(arg); } CpuVectorT& copiedArg() { return arg_; } private: CpuVectorT arg_; }; template void TensorCheck(AssertEq compare, const CpuMatrix& matrix1, const CpuMatrix& matrix2) { CHECK(matrix1.getHeight() == matrix2.getHeight()); CHECK(matrix1.getWidth() == matrix2.getWidth()); int height = matrix1.getHeight(); int width = matrix1.getWidth(); const real* data1 = matrix1.getData(); const real* data2 = matrix2.getData(); int count = 0; for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { real a = data1[i * width + j]; real b = data2[i * width + j]; if (!compare(a, b)) { count++; } } } EXPECT_EQ(count, 0) << "There are " << count << " different element."; } template void TensorCheck(AssertEq compare, const CpuVectorT& vector1, const CpuVectorT& vector2) { CHECK(vector1.getSize() == vector2.getSize()); const T* data1 = vector1.getData(); const T* data2 = vector2.getData(); size_t size = vector1.getSize(); int count = 0; for (size_t i = 0; i < size; i++) { real a = data1[i]; real b = data2[i]; if (!compare(a, b)) { count++; } } EXPECT_EQ(count, 0) << "There are " << count << " different elements."; } template void TensorCheck(AssertEq compare, const Tensor1& tensor1, const Tensor2& tensor2) { TensorCheck(compare, CopyToCpu(tensor1).copiedArg(), CopyToCpu(tensor2).copiedArg()); } template void TensorCheck(AssertEq compare, real args1, real args2) { EXPECT_EQ(compare(args1, args2), true) << "[Test error] args1 = " << args1 << ", args2 = " << args2; } template void TensorCheck(AssertEq compare, size_t args1, size_t args2) { EXPECT_EQ(args1, args2) << "[Test error] args1 = " << args1 << ", args2 = " << args2; } template void TensorCheckEqual(const Tensor1& tensor1, const Tensor2& tensor2) { AssertEqual compare(0); TensorCheck(compare, CopyToCpu(tensor1).copiedArg(), CopyToCpu(tensor2).copiedArg()); } template void TensorCheckErr(const Tensor1& tensor1, const Tensor2& tensor2) { #ifndef PADDLE_TYPE_DOUBLE AssertEqual compare(1e-3); #else AssertEqual compare(1e-10); #endif TensorCheck(compare, CopyToCpu(tensor1).copiedArg(), CopyToCpu(tensor2).copiedArg()); } } // namespace autotest