// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h" #include #include #include "glog/logging.h" #include "paddle/fluid/framework/ir/graph_helper.h" #include "paddle/fluid/inference/analysis/pass_result_info.h" #include "paddle/fluid/platform/enforce.h" namespace paddle { namespace framework { namespace ir { class Graph; class Node; } // namespace ir } // namespace framework } // namespace paddle namespace paddle { namespace inference { namespace analysis { using framework::ir::Graph; using framework::ir::Node; using framework::ir::TopologyVarientSort; using space_table_t = MemoryOptimizePass::space_table_t; typedef struct { std::string name; size_t size; int cluster; std::pair lifetime; std::unordered_set adj; } MemNode; // Collect the lifecycles of the tensors. // Traverse the graph in topological order. // The traversal order also affect the lifecycles, so different sort_kind is // used. void MemoryOptimizePass::CollectLifeCycle( Graph* graph, std::unordered_map* lifecycles, int sort_kind) const { int max_lifecycle = 0; for (auto* op_node : framework::ir::TopologyVarientSort( *graph, static_cast(sort_kind))) { if (!op_node->IsOp()) continue; auto reads = op_node->inputs; auto writes = op_node->outputs; std::vector requires(reads.begin(), reads.end()); requires.insert(requires.end(), writes.begin(), writes.end()); // Disable reuse of feed variables. if (op_node->Name() == "feed") { for (auto* node : op_node->outputs) { auto var = node->Name(); lifecycles->emplace(var, std::make_pair(0, std::numeric_limits::max())); } } else { // Normal operators. for (const Node* node : requires) { if (!node->Var()) continue; if (node->Var()->Persistable()) continue; std::string var = node->Name(); if (!lifecycles->count(var)) { (*lifecycles)[var] = std::make_pair(max_lifecycle, max_lifecycle); } else { (*lifecycles)[var].second = std::max(max_lifecycle, lifecycles->at(var).second); // max() } } } ++max_lifecycle; } } void MemoryOptimizePass::CollectVarMemorySize( Graph* graph, space_table_t* space_table) const { const int fake_batch_size = 1; auto valid_var = [&](framework::ir::Node* node) -> bool { // lod operator reuse may cause unknown errors. std::set invalid_op = {"while", "conditional_block", "tensorrt_engine", "conditional_block_infer", "merge_lod_tensor_infer", "merge_lod_tensor", "equal", "sequence_pool", "recurrent", "lod_reset", "fetch", "share_data"}; for (auto* tmp : node->inputs) { CHECK(tmp->IsOp()); std::string op_type = tmp->Op()->Type(); if (std::find(invalid_op.begin(), invalid_op.end(), op_type) != invalid_op.end()) { return false; } } for (auto* tmp : node->outputs) { CHECK(tmp->IsOp()); std::string op_type = tmp->Op()->Type(); if (std::find(invalid_op.begin(), invalid_op.end(), op_type) != invalid_op.end()) { return false; } } return true; }; // MemoryOptimizePass surppose input model is directed acyclic graph // although it's not always the case. so black list is the best compromise // between performance and underlying principle. std::unordered_set black_list; for (auto* node : graph->Nodes()) { if (node->IsVar() && node->Var() && node->Var()->GetType() == framework::proto::VarType::Type::VarType_Type_LOD_TENSOR) { if (!valid_var(node)) { black_list.emplace(node->Var()->Name()); } } } // Collect tensors from graph. for (auto* node : graph->Nodes()) { if (node->IsVar() && node->Var() && node->Var()->GetType() == framework::proto::VarType::Type::VarType_Type_LOD_TENSOR && !black_list.count(node->Var()->Name())) { // Parameters will not be reused. if (node->Var()->Persistable()) continue; auto shape = node->Var()->GetShape(); for (auto& v : shape) { if (v < 0) v = fake_batch_size; } int size = std::accumulate( shape.begin(), shape.end(), 1, std::multiplies()); (*space_table)[node->Var()->Name()] = size * paddle::framework::SizeOfType(node->Var()->GetDataType()); } } } void MakeSimpleReusePlan( const std::unordered_map>& lifecycles, const std::unordered_map& space_table, std::unordered_map* node2cluster, std::unordered_map* cluster_size) { std::vector mem_nodes; for (auto& data : lifecycles) { if (!space_table.count(data.first)) continue; MemNode temp_node; temp_node.name = data.first; temp_node.size = space_table.at(data.first); temp_node.cluster = -1; temp_node.lifetime = data.second; mem_nodes.push_back(temp_node); } auto overlap = [](std::pair a, std::pair b) -> bool { return b.second >= a.first && a.second >= b.first; }; // If the lifetime of two nodes is overwritten, we set them as adjacent nodes. for (size_t i = 0; i < mem_nodes.size(); i++) { for (size_t j = i + 1; j < mem_nodes.size(); j++) { if (overlap(mem_nodes[i].lifetime, mem_nodes[j].lifetime)) { mem_nodes[i].adj.insert(mem_nodes[j].name); mem_nodes[j].adj.insert(mem_nodes[i].name); } } } // Sort the nodes according to the node memory size. auto sort_func = [](MemNode a, MemNode b) { return a.size > b.size; }; std::sort(mem_nodes.begin(), mem_nodes.end(), sort_func); // Generating Memory Reuse Strategy Based on Greedy Way for (size_t i = 0; i < mem_nodes.size(); i++) { if (mem_nodes[i].cluster >= 0) continue; int cluster_index = cluster_size->size(); mem_nodes[i].cluster = cluster_index; (*cluster_size)[mem_nodes[i].name] = mem_nodes[i].size; (*node2cluster)[mem_nodes[i].name] = mem_nodes[i].name; std::unordered_set cluster_adj = mem_nodes[i].adj; for (size_t j = i + 1; j < mem_nodes.size(); j++) { if (mem_nodes[j].cluster < 0 && (cluster_adj.find(mem_nodes[j].name) == cluster_adj.end())) { (*node2cluster)[mem_nodes[j].name] = mem_nodes[i].name; mem_nodes[j].cluster = cluster_index; for (auto& n : mem_nodes[j].adj) { cluster_adj.insert(n); } } } } for (auto& cluster : *cluster_size) { LOG(INFO) << "Cluster name : " << cluster.first << " size: " << cluster.second; } } // NOTE The optimized opdesc doesn't match ir::Graph. void UpdateOpDescsByReuse( Graph* graph, const std::unordered_map& reuse_table, int sort_kind) { // TODO(Superjomn) change here to be compatible with the runtime order. for (auto* node : TopologyVarientSort( *graph, static_cast(sort_kind))) { if (node->IsOp()) { // Replace the original inputs/outputs with the reused tensors. std::unordered_map> in_args, out_args; for (auto argument : node->Op()->Inputs()) { for (const auto& x : argument.second) { auto name = x; if (reuse_table.count(x) && reuse_table.at(x) != x) { name = reuse_table.at(x); } in_args[argument.first].push_back(name); VLOG(4) << node->Name() << " input " << x << " -> " << name; } } // modify the graph for (auto input_node : node->inputs) { PADDLE_ENFORCE_EQ(input_node->IsVar(), true, platform::errors::PreconditionNotMet( "The input node should be a variable.")); std::string input_node_name = input_node->Name(); if (reuse_table.count(input_node_name) && reuse_table.at(input_node_name) != input_node_name) { auto name = reuse_table.at(input_node_name); input_node->RenameVar(name); } } for (auto argument : node->Op()->Outputs()) { for (const auto& x : argument.second) { auto name = x; if (reuse_table.count(x) && reuse_table.at(x) != x) { name = reuse_table.at(x); } out_args[argument.first].push_back(name); VLOG(4) << node->Name() << " output " << x << " -> " << name; } } // modify the graph for (auto out_node : node->outputs) { PADDLE_ENFORCE_EQ(out_node->IsVar(), true, platform::errors::PreconditionNotMet( "The output node should be a variable.")); std::string out_node_name = out_node->Name(); if (reuse_table.count(out_node_name) && reuse_table.at(out_node_name) != out_node_name) { auto name = reuse_table.at(out_node_name); out_node->RenameVar(name); } } // Update arguments. for (auto& arg : in_args) { node->Op()->SetInput(arg.first, arg.second); } for (auto& arg : out_args) { node->Op()->SetOutput(arg.first, arg.second); } node->Op()->Flush(); } } } std::string MemoryOptimizePass::repr() const { return "memory_optimize_pass"; } void MemoryOptimizePass::RunImpl(Argument* argument) { // Memory optimization. // We will perform the following operation: // 1. Collect all var's lifetime. // 2. Make reuse plan: the vars can be reused if there is no overlap(on // lifetime) between // them. // The final plan is a mapping table in which the key represents the original // name of var and the value in the table represents the current name of var. // 3. Perform reuse plan: Replace all var's name in the model according to the // mapping table. if (!argument->enable_memory_optim()) return; // Because of pass is a singleton, graph can not be member // variables,otherwise, errors will be caused under multithreading // conditions. auto graph = argument->main_graph_ptr(); int sort_kind = 0; std::unordered_map lifecycles; space_table_t space_table; std::unordered_map node2cluster; std::unordered_map cluster_size; CollectLifeCycle(graph, &lifecycles, sort_kind); CollectVarMemorySize(graph, &space_table); MakeSimpleReusePlan(lifecycles, space_table, &node2cluster, &cluster_size); auto* pass_res_info = PassResultInfoForRuntime::Instance(); pass_res_info->Set( argument->root_predictor_id(), "memory_optimize_pass", node2cluster); return; } } // namespace analysis } // namespace inference } // namespace paddle