/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include // NOLINT #include #include #include "paddle/fluid/framework/details/cow_ptr.h" #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/memory/malloc.h" #include "paddle/fluid/memory/memcpy.h" #include "glog/logging.h" namespace paddle { namespace framework { #if defined(PADDLE_WITH_CUDA) // Vector implements the std::vector interface, and can get Data or // MutableData from any place. The data will be synced implicitly inside. template class Vector { public: using value_type = T; using iterator = typename std::vector::iterator; using const_iterator = typename std::vector::const_iterator; private: // The actual class to implement vector logic class VectorData { public: VectorData() : flag_(kDataInCPU) {} VectorData(size_t count, const T &value) : cpu_(count, value), flag_(kDataInCPU) {} VectorData(std::initializer_list init) : cpu_(init), flag_(kDataInCPU) {} template explicit VectorData(const std::vector &dat) : cpu_(dat), flag_(kDataInCPU) {} ~VectorData() {} VectorData(const VectorData &o) { o.ImmutableCPU(); cpu_ = o.cpu_; flag_ = kDataInCPU; } VectorData &operator=(const VectorData &o) { o.ImmutableCPU(); cpu_ = o.cpu_; flag_ = kDataInCPU; return *this; } T &operator[](size_t i) { MutableCPU(); return cpu_[i]; } const T &operator[](size_t i) const { ImmutableCPU(); return cpu_[i]; } size_t size() const { return cpu_.size(); } iterator begin() { MutableCPU(); return cpu_.begin(); } iterator end() { MutableCPU(); return cpu_.end(); } T &front() { MutableCPU(); return cpu_.front(); } T &back() { MutableCPU(); return cpu_.back(); } const_iterator begin() const { ImmutableCPU(); return cpu_.begin(); } const_iterator end() const { ImmutableCPU(); return cpu_.end(); } const T &back() const { ImmutableCPU(); return cpu_.back(); } T *data() { return &(*this)[0]; } const T *data() const { return &(*this)[0]; } const T &front() const { ImmutableCPU(); return cpu_.front(); } // assign this from iterator. // NOTE: the iterator must support `end-begin` template void assign(Iter begin, Iter end) { MutableCPU(); cpu_.assign(begin, end); } // push_back. If the previous capacity is not enough, the memory will // double. void push_back(T elem) { MutableCPU(); cpu_.push_back(elem); } // extend a vector by iterator. // NOTE: the iterator must support end-begin template void Extend(It begin, It end) { MutableCPU(); auto out_it = std::back_inserter>(this->cpu_); std::copy(begin, end, out_it); } // resize the vector void resize(size_t size) { MutableCPU(); cpu_.resize(size); } // get cuda ptr. immutable const T *CUDAData(platform::Place place) const { PADDLE_ENFORCE(platform::is_gpu_place(place), "CUDA Data must on CUDA place"); ImmutableCUDA(place); return reinterpret_cast(gpu_->ptr()); } // get cuda ptr. mutable T *CUDAMutableData(platform::Place place) { const T *ptr = CUDAData(place); flag_ = kDirty | kDataInCUDA; return const_cast(ptr); } // clear void clear() { cpu_.clear(); flag_ = kDirty | kDataInCPU; } size_t capacity() const { return cpu_.capacity(); } // reserve data void reserve(size_t size) const { cpu_.reserve(size); } // implicit cast operator. Vector can be cast to std::vector implicitly. operator std::vector() const { ImmutableCPU(); return cpu_; } bool operator==(const VectorData &other) const { ImmutableCPU(); other.ImmutableCPU(); return cpu_ == other.cpu_; } std::mutex &Mutex() const { return mtx_; } boost::optional CUDAPlace() const { return gpu_ == nullptr ? boost::none : boost::optional( BOOST_GET_CONST(platform::CUDAPlace, gpu_->place())); } private: enum DataFlag { kDataInCPU = 0x01, kDataInCUDA = 0x02, // kDirty means the data has been changed in one device. kDirty = 0x10 }; void CopyToCPU() const { // COPY GPU Data To CPU auto *dev_ctx = static_cast( platform::DeviceContextPool::Instance().Get(gpu_->place())); auto stream = dev_ctx->stream(); void *src = gpu_->ptr(); void *dst = cpu_.data(); paddle::memory::Copy(platform::CPUPlace(), dst, CUDAPlace().get(), src, gpu_memory_size_, stream); dev_ctx->Wait(); } void MutableCPU() { if (IsInCUDA() && IsDirty()) { CopyToCPU(); } flag_ = kDirty | kDataInCPU; } void ImmutableCUDA(platform::Place place) const { if (IsDirty()) { if (IsInCPU()) { CopyCPUDataToCUDA(place); UnsetFlag(kDirty); SetFlag(kDataInCUDA); } else if (IsInCUDA() && !(place == gpu_->place())) { PADDLE_THROW("This situation should not happen"); // Still dirty } else { // Dirty && DataInCUDA && Device is same // Do nothing } } else { if (!IsInCUDA()) { // Even data is not dirty. However, data is not in CUDA. Copy data. CopyCPUDataToCUDA(place); SetFlag(kDataInCUDA); } else if (!(place == gpu_->place())) { PADDLE_THROW("This situation should not happen."); } else { // Not Dirty && DataInCUDA && Device is same // Do nothing. } } } void CopyCPUDataToCUDA(const platform::Place &place) const { void *src = cpu_.data(); gpu_memory_size_ = cpu_.size() * sizeof(T); gpu_ = memory::Alloc(place, gpu_memory_size_); void *dst = gpu_->ptr(); auto *dev_ctx = static_cast( platform::DeviceContextPool::Instance().Get(place)); auto stream = dev_ctx->stream(); paddle::memory::Copy(CUDAPlace().get(), dst, platform::CPUPlace(), src, gpu_memory_size_, stream); } void ImmutableCPU() const { if (IsDirty() && !IsInCPU()) { // If data has been changed in CUDA, or // CPU has no data. CopyToCPU(); UnsetFlag(kDirty); } SetFlag(kDataInCPU); } void UnsetFlag(int flag) const { flag_ &= ~flag; } void SetFlag(int flag) const { flag_ |= flag; } bool IsDirty() const { return flag_ & kDirty; } bool IsInCUDA() const { return flag_ & kDataInCUDA; } bool IsInCPU() const { return flag_ & kDataInCPU; } mutable std::vector cpu_; mutable paddle::memory::AllocationPtr gpu_; mutable size_t gpu_memory_size_{0}; mutable int flag_; mutable std::mutex mtx_; }; public: // Default ctor. Create empty Vector Vector() : m_(new VectorData()) {} // Fill vector with value. The vector size is `count`. explicit Vector(size_t count, const T &value = T()) : m_(new VectorData(count, value)) {} // Ctor with init_list Vector(std::initializer_list init) : m_(new VectorData(init)) {} // implicit cast from std::vector. template Vector(const std::vector &dat) : m_(new VectorData(dat)) { // NOLINT } // Copy ctor Vector(const Vector &other) { m_ = other.m_; } // Copy operator Vector &operator=(const Vector &other) { m_ = other.m_; return *this; } // Move ctor Vector(Vector &&other) { m_ = std::move(other.m_); } // CPU data access method. Mutable. T &operator[](size_t i) { return (*m_.MutableData())[i]; } // CPU data access method. Immutable. const T &operator[](size_t i) const { return m_.Data()[i]; } // std::vector iterator methods. Based on CPU data access method size_t size() const { return m_.Data().size(); } iterator begin() { return m_.MutableData()->begin(); } iterator end() { return m_.MutableData()->end(); } T &front() { return m_.MutableData()->front(); } T &back() { return m_.MutableData()->back(); } const_iterator begin() const { return m_.Data().begin(); } const_iterator end() const { return m_.Data().end(); } const_iterator cbegin() const { return begin(); } const_iterator cend() const { return end(); } const T &back() const { return m_.Data().back(); } T *data() { return m_.MutableData()->data(); } const T *data() const { return m_.Data().data(); } const T &front() const { return m_.Data().front(); } // end of std::vector iterator methods // assign this from iterator. // NOTE: the iterator must support `end-begin` template void assign(Iter begin, Iter end) { m_.MutableData()->assign(begin, end); } // push_back. If the previous capacity is not enough, the memory will // double. void push_back(T elem) { m_.MutableData()->push_back(elem); } // extend a vector by iterator. // NOTE: the iterator must support end-begin template void Extend(It begin, It end) { m_.MutableData()->Extend(begin, end); } // resize the vector void resize(size_t size) { if (m_.Data().size() != size) { m_.MutableData()->resize(size); } } // get cuda ptr. immutable const T *CUDAData(platform::Place place) const { { auto &mtx = m_.Data().Mutex(); std::lock_guard guard(mtx); auto cuda_place = m_.Data().CUDAPlace(); if (cuda_place == boost::none || cuda_place == BOOST_GET(platform::CUDAPlace, place)) { return m_.Data().CUDAData(place); } } // If m_ contains CUDAData in a different place. Detach manually. m_.Detach(); return CUDAData(place); } // get cuda ptr. mutable T *CUDAMutableData(platform::Place place) { { auto &mtx = m_.Data().Mutex(); std::lock_guard guard(mtx); auto cuda_place = m_.Data().CUDAPlace(); if (cuda_place == boost::none || cuda_place == BOOST_GET(platform::CUDAPlace, place)) { return m_.MutableData()->CUDAMutableData(place); } } // If m_ contains CUDAData in a different place. Detach manually. m_.Detach(); return CUDAMutableData(place); } // clear void clear() { m_.MutableData()->clear(); } size_t capacity() const { return m_.Data().capacity(); } // reserve data void reserve(size_t size) { m_.Data().reserve(size); } // the unify method to access CPU or CUDA data. immutable. const T *Data(platform::Place place) const { if (platform::is_gpu_place(place)) { return CUDAData(place); } else { return data(); } } // the unify method to access CPU or CUDA data. mutable. T *MutableData(platform::Place place) { if (platform::is_gpu_place(place)) { return CUDAMutableData(place); } else { return data(); } } // implicit cast operator. Vector can be cast to std::vector implicitly. operator std::vector() const { return m_.Data(); } bool operator==(const Vector &other) const { if (size() != other.size()) return false; auto it1 = cbegin(); auto it2 = other.cbegin(); for (; it1 < cend(); ++it1, ++it2) { if (*it1 != *it2) { return false; } } return true; } const void *Handle() const { return &m_.Data(); } private: // Vector is an COW object. mutable details::COWPtr m_; }; #else // PADDLE_WITH_CUDA template class CPUVector : public std::vector> { public: CPUVector() : std::vector() {} CPUVector(size_t count, const T &value = T()) // NOLINT : std::vector(count, value) {} CPUVector(std::initializer_list init) : std::vector(init) {} CPUVector(const std::vector &other) : std::vector(other) {} // NOLINT CPUVector(const CPUVector &other) : std::vector(other) {} CPUVector(CPUVector &&other) : std::vector(std::move(other)) {} CPUVector(std::vector &&other) // NOLINT : std::vector(std::move(other)) {} CPUVector &operator=(const CPUVector &other) { this->assign(other.begin(), other.end()); return *this; } CPUVector &operator=(const std::vector &other) { this->assign(other.begin(), other.end()); return *this; } friend std::ostream &operator<<(std::ostream &os, const CPUVector &other) { std::stringstream ss; for (auto v : other) { os << v << " "; } return os; } T &operator[](size_t id) { return this->at(id); } const T &operator[](size_t id) const { return this->at(id); } template void Extend(const D &begin, const D &end) { this->reserve(this->size() + size_t(end - begin)); this->insert(this->end(), begin, end); } const T *CUDAData(platform::Place place) const { PADDLE_THROW( "Vector::CUDAData() method is not supported in CPU-only version"); } T *CUDAMutableData(platform::Place place) { PADDLE_THROW( "Vector::CUDAMutableData() method is not supported in CPU-only " "version"); } const T *Data(platform::Place place) const { PADDLE_ENFORCE( platform::is_cpu_place(place), "Vector::Data() method is not supported when not in CPUPlace"); return this->data(); } T *MutableData(platform::Place place) { PADDLE_ENFORCE( platform::is_cpu_place(place), "Vector::MutableData() method is not supported when not in CPUPlace"); return this->data(); } const void *Handle() const { return static_cast(this); } }; template using Vector = CPUVector; #endif // PADDLE_WITH_CUDA }; // namespace framework } // namespace paddle