# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle.fluid.core as core import paddle.fluid as fluid import paddle from paddle.fluid import Program, program_guard from paddle.nn.functional import interpolate def cubic_1(x, a): return ((a + 2) * x - (a + 3)) * x * x + 1 def cubic_2(x, a): return ((a * x - 5 * a) * x + 8 * a) * x - 4 * a def cubic_interp1d(x0, x1, x2, x3, t): param = [0, 0, 0, 0] a = -0.75 x_1 = t x_2 = 1.0 - t param[0] = cubic_2(x_1 + 1.0, a) param[1] = cubic_1(x_1, a) param[2] = cubic_1(x_2, a) param[3] = cubic_2(x_2 + 1.0, a) return x0 * param[0] + x1 * param[1] + x2 * param[2] + x3 * param[3] def value_bound(input, w, h, x, y): access_x = int(max(min(x, w - 1), 0)) access_y = int(max(min(y, h - 1), 0)) return input[:, :, access_y, access_x] def bicubic_interp_np(input, out_h, out_w, out_size=None, actual_shape=None, align_corners=True, data_layout='kNCHW'): """trilinear interpolation implement in shape [N, C, H, W]""" if data_layout == "NHWC": input = np.transpose(input, (0, 3, 1, 2)) # NHWC => NCHW if out_size is not None: out_h = out_size[0] out_w = out_size[1] if actual_shape is not None: out_h = actual_shape[0] out_w = actual_shape[1] batch_size, channel, in_h, in_w = input.shape ratio_h = ratio_w = 0.0 if out_h > 1: if (align_corners): ratio_h = (in_h - 1.0) / (out_h - 1.0) else: ratio_h = 1.0 * in_h / out_h if out_w > 1: if (align_corners): ratio_w = (in_w - 1.0) / (out_w - 1.0) else: ratio_w = 1.0 * in_w / out_w out = np.zeros((batch_size, channel, out_h, out_w)) for k in range(out_h): if (align_corners): h = ratio_h * k else: h = ratio_h * (k + 0.5) - 0.5 input_y = np.floor(h) y_t = h - input_y for l in range(out_w): if (align_corners): w = ratio_w * l else: w = ratio_w * (l + 0.5) - 0.5 input_x = np.floor(w) x_t = w - input_x for i in range(batch_size): for j in range(channel): coefficients = [0, 0, 0, 0] for ii in range(4): access_x_0 = int(max(min(input_x - 1, in_w - 1), 0)) access_x_1 = int(max(min(input_x + 0, in_w - 1), 0)) access_x_2 = int(max(min(input_x + 1, in_w - 1), 0)) access_x_3 = int(max(min(input_x + 2, in_w - 1), 0)) access_y = int(max(min(input_y - 1 + ii, in_h - 1), 0)) coefficients[ii] = cubic_interp1d( input[i, j, access_y, access_x_0], input[i, j, access_y, access_x_1], input[i, j, access_y, access_x_2], input[i, j, access_y, access_x_3], x_t) out[i, j, k, l] = cubic_interp1d( coefficients[0], coefficients[1], coefficients[2], coefficients[3], y_t) if data_layout == "NHWC": out = np.transpose(out, (0, 2, 3, 1)) # NCHW => NHWC return out.astype(input.dtype) class TestBicubicInterpOp(OpTest): def setUp(self): self.out_size = None self.actual_shape = None self.data_layout = 'NCHW' self.init_test_case() self.op_type = "bicubic_interp" input_np = np.random.random(self.input_shape).astype("float64") if self.data_layout == "NCHW": in_h = self.input_shape[2] in_w = self.input_shape[3] else: in_h = self.input_shape[1] in_w = self.input_shape[2] if self.scale > 0: out_h = int(in_h * self.scale) out_w = int(in_w * self.scale) else: out_h = self.out_h out_w = self.out_w output_np = bicubic_interp_np(input_np, out_h, out_w, self.out_size, self.actual_shape, self.align_corners, self.data_layout) self.inputs = {'X': input_np} if self.out_size is not None: self.inputs['OutSize'] = self.out_size if self.actual_shape is not None: self.inputs['OutSize'] = self.actual_shape self.attrs = { 'out_h': self.out_h, 'out_w': self.out_w, 'scale': self.scale, 'interp_method': self.interp_method, 'align_corners': self.align_corners, 'data_layout': self.data_layout } self.outputs = {'Out': output_np} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', in_place=True) def init_test_case(self): self.interp_method = 'bicubic' self.input_shape = [2, 3, 5, 5] self.out_h = 2 self.out_w = 2 self.scale = 0. self.out_size = np.array([3, 3]).astype("int32") self.align_corners = True class TestBicubicInterpCase1(TestBicubicInterpOp): def init_test_case(self): self.interp_method = 'bicubic' self.input_shape = [4, 1, 7, 8] self.out_h = 1 self.out_w = 1 self.scale = 0. self.align_corners = True class TestBicubicInterpCase2(TestBicubicInterpOp): def init_test_case(self): self.interp_method = 'bicubic' self.input_shape = [3, 3, 9, 6] self.out_h = 10 self.out_w = 8 self.scale = 0. self.align_corners = True class TestBicubicInterpCase3(TestBicubicInterpOp): def init_test_case(self): self.interp_method = 'bicubic' self.input_shape = [1, 1, 32, 64] self.out_h = 64 self.out_w = 32 self.scale = 0. self.align_corners = False class TestBicubicInterpCase4(TestBicubicInterpOp): def init_test_case(self): self.interp_method = 'bicubic' self.input_shape = [4, 1, 7, 8] self.out_h = 1 self.out_w = 1 self.scale = 0. self.out_size = np.array([2, 2]).astype("int32") self.align_corners = True class TestBicubicInterpCase5(TestBicubicInterpOp): def init_test_case(self): self.interp_method = 'bicubic' self.input_shape = [3, 3, 9, 6] self.out_h = 11 self.out_w = 11 self.scale = 0. self.out_size = np.array([6, 4]).astype("int32") self.align_corners = False class TestBicubicInterpCase6(TestBicubicInterpOp): def init_test_case(self): self.interp_method = 'bicubic' self.input_shape = [1, 1, 32, 64] self.out_h = 64 self.out_w = 32 self.scale = 0 self.out_size = np.array([64, 32]).astype("int32") self.align_corners = False class TestBicubicInterpSame(TestBicubicInterpOp): def init_test_case(self): self.interp_method = 'bicubic' self.input_shape = [2, 3, 32, 64] self.out_h = 32 self.out_w = 64 self.scale = 0. self.align_corners = True class TestBicubicInterpDataLayout(TestBicubicInterpOp): def init_test_case(self): self.interp_method = 'bicubic' self.input_shape = [2, 5, 5, 3] self.out_h = 2 self.out_w = 2 self.scale = 0. self.out_size = np.array([3, 3]).astype("int32") self.align_corners = True self.data_layout = "NHWC" class TestBicubicInterpOpAPI(unittest.TestCase): def test_case(self): np.random.seed(200) x_data = np.random.random((2, 3, 6, 6)).astype("float32") dim_data = np.array([12]).astype("int32") shape_data = np.array([12, 12]).astype("int32") actual_size_data = np.array([12, 12]).astype("int32") scale_data = np.array([2.0]).astype("float32") prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda( ) else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32") dim = fluid.data(name="dim", shape=[1], dtype="int32") shape_tensor = fluid.data( name="shape_tensor", shape=[2], dtype="int32") actual_size = fluid.data( name="actual_size", shape=[2], dtype="int32") scale_tensor = fluid.data( name="scale_tensor", shape=[1], dtype="float32") out1 = interpolate( x, out_shape=[12, 12], resample='BICUBIC', align_corners=False) out2 = interpolate( x, out_shape=[12, dim], resample='BICUBIC', align_corners=False) out3 = interpolate( x, out_shape=shape_tensor, resample='BICUBIC', align_corners=False) out4 = interpolate( x, out_shape=[4, 4], actual_shape=actual_size, resample='BICUBIC', align_corners=False) out5 = interpolate( x, scale=scale_tensor, resample='BICUBIC', align_corners=False) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) results = exe.run(fluid.default_main_program(), feed={ "x": x_data, "dim": dim_data, "shape_tensor": shape_data, "actual_size": actual_size_data, "scale_tensor": scale_data }, fetch_list=[out1, out2, out3, out4, out5], return_numpy=True) expect_res = bicubic_interp_np( x_data, out_h=12, out_w=12, align_corners=False) for res in results: self.assertTrue(np.allclose(res, expect_res)) with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(x_data) interp = interpolate( x, out_shape=[12, 12], resample='BICUBIC', align_corners=False) dy_result = interp.numpy() expect = bicubic_interp_np( x_data, out_h=12, out_w=12, align_corners=False) self.assertTrue(np.allclose(dy_result, expect)) class TestBicubicOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): # the input of interpoalte must be Variable. x1 = fluid.create_lod_tensor( np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()) self.assertRaises(TypeError, interpolate, x1) def test_mode_type(): # mode must be "BILINEAR" "TRILINEAR" "NEAREST" "BICUBIC" x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32") out = interpolate( x, out_shape=[12, 12], resample='UNKONWN', align_corners=False) def test_input_shape(): x = fluid.data(name="x", shape=[2], dtype="float32") out = interpolate( x, out_shape=[12, 12], resample='BICUBIC', align_corners=False) def test_align_corcers(): x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32") interpolate( x, out_shape=[12, 12], resample='BICUBIC', align_corners=3) def test_out_shape(): x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32") out = interpolate( x, out_shape=[12], resample='BICUBIC', align_corners=False) def test_attr_data_format(): # for 5-D input, data_format only can be NCDHW or NDHWC input = fluid.data( name="input", shape=[2, 3, 6, 9, 4], dtype="float32") out = interpolate( input, out_shape=[4, 8, 4, 5], resample='TRILINEAR', data_format='NHWC') def test_actual_shape(): # the actual_shape must be Variable. x = fluid.create_lod_tensor( np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()) out = interpolate( x, out_shape=[12, 12], resample='BICUBIC', align_corners=False) def test_scale_value(): # the scale must be greater than zero. x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32") out = interpolate( x, out_shape=None, resample='BICUBIC', align_corners=False, scale=-2.0) def test_attr_5D_input(): # for 5-D input, data_format only can be NCDHW or NDHWC input = fluid.data( name="input", shape=[2, 3, 6, 9, 4], dtype="float32") out = interpolate( input, out_shape=[4, 8, 4, 5], resample='TRILINEAR', data_format='NDHWC') def test_scale_type(): # the scale must be greater than zero. x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32") scale = fluid.create_lod_tensor( np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()) out = interpolate( x, out_shape=None, resample='BICUBIC', align_corners=False, scale=scale) def test_align_mode(): x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32") out = interpolate( x, out_shape=None, resample='NEAREST', align_corners=False, align_mode=2, scale=1.0) def test_outshape_and_scale(): x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32") out = interpolate( x, out_shape=None, resample='BICUBIC', align_corners=False, scale=None) self.assertRaises(ValueError, test_mode_type) self.assertRaises(ValueError, test_input_shape) self.assertRaises(TypeError, test_align_corcers) self.assertRaises(ValueError, test_attr_data_format) self.assertRaises(TypeError, test_actual_shape) self.assertRaises(ValueError, test_scale_value) self.assertRaises(ValueError, test_out_shape) self.assertRaises(ValueError, test_attr_5D_input) self.assertRaises(TypeError, test_scale_type) self.assertRaises(ValueError, test_align_mode) self.assertRaises(ValueError, test_outshape_and_scale) if __name__ == "__main__": unittest.main()