# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from op_test import OpTest import unittest import numpy as np import six class CrossEntropy2OpTestBase(OpTest): def initParameters(self): return [32, 64], 'float32', -100, False def calc_output(self, logits, label, ignore_index): ret = np.zeros(shape=label.shape, dtype=logits.dtype) match_x = np.zeros(shape=label.shape, dtype=logits.dtype) for idx in six.moves.range(label.shape[0]): if label[idx] == ignore_index: continue match_x[idx] = logits[idx][label[idx]] ret[idx] = -np.log(match_x[idx]) return ret, match_x def setUp(self): self.shape, self.dtype, self.ignore_index, self.drop_last_dim = self.initParameters( ) self.op_type = 'cross_entropy2' feature_size = int(self.shape[-1]) batch_size = int(np.prod(self.shape) / feature_size) logits = (np.random.random(size=self.shape) + 1).astype(self.dtype) label_shape = self.shape[0:-1] if self.drop_last_dim else self.shape[ 0:-1] + [1] label = np.random.random_integers( low=0, high=feature_size - 1, size=label_shape).astype('int64') outputs, match_x = self.calc_output( np.reshape(logits, [batch_size, feature_size]), np.reshape(label, [batch_size, 1]), self.ignore_index) self.inputs = {'X': logits, 'Label': label} out_shape = label_shape self.outputs = { 'Y': np.reshape(outputs, out_shape), 'MatchX': np.reshape(match_x, self.shape[:-1] + [1]), 'XShape': np.zeros( shape=logits.shape, dtype=logits.dtype) } self.attrs = {'ignore_index': self.ignore_index} def test_check_output(self): self.check_output(no_check_set=['XShape']) def test_check_grad(self): self.check_grad( inputs_to_check=['X'], output_names=['Y'], no_grad_set=['XShape', 'MatchX', 'Label']) class CrossEntropy2OpTest2(CrossEntropy2OpTestBase): def initParameters(self): return [32, 64], 'float64', 3, False class CrossEntropy2OpTest2RemoveLastDim(CrossEntropy2OpTestBase): def initParameters(self): return [32, 64], 'float64', 3, True class CrossEntropy2OpTest3(CrossEntropy2OpTestBase): def initParameters(self): return [4, 8, 16, 32], 'float32', -100, False class CrossEntropy2OpTest3RemoveLastDim(CrossEntropy2OpTestBase): def initParameters(self): return [4, 8, 16, 32], 'float32', -100, True class CrossEntropy2OpTest4(CrossEntropy2OpTestBase): def initParameters(self): return [4, 8, 16, 32], 'float32', 3, False if __name__ == '__main__': unittest.main()