/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/infermeta/unary.h" #include #include #include "gflags/gflags.h" #include "paddle/phi/common/data_type.h" #include "paddle/phi/common/type_traits.h" #include "paddle/phi/core/enforce.h" #include "paddle/phi/core/infermeta_utils.h" #include "paddle/phi/core/utils/data_type.h" #include "paddle/phi/kernels/funcs/parse_qr_mode.h" #include "paddle/phi/kernels/funcs/pooling.h" #include "paddle/phi/kernels/funcs/slice_utils.h" #include "paddle/phi/kernels/funcs/strided_slice.h" #include "paddle/phi/kernels/funcs/unfold_functor.h" #include "paddle/phi/kernels/funcs/unsqueeze.h" #include "paddle/phi/kernels/impl/einsum_impl.h" namespace phi { namespace detail { // Used in MatrixRankInferMeta static DDim CheckAndGetOutputDim(const DDim& dim_x) { auto x_vec = phi::vectorize(dim_x); if (x_vec.size() == 2) { return phi::make_ddim({1}); } x_vec.erase(x_vec.end() - 2, x_vec.end()); return phi::make_ddim(x_vec); } } // namespace detail void AffineGridInferMeta(const MetaTensor& input, const IntArray& outputShape, bool align_corners, MetaTensor* output) { auto theta_dims = input.dims(); bool is_from_tensor = outputShape.FromTensor(); if (!is_from_tensor) { PADDLE_ENFORCE_EQ( theta_dims.size(), 3, phi::errors::InvalidArgument( "The input Theta's dimensions size should be 3. But received " "Theta's demensions size=[%d], Theta's dimensions=[%s].", theta_dims.size(), theta_dims)); PADDLE_ENFORCE_GE( outputShape.GetData().size(), 4, phi::errors::InvalidArgument( "The size of attribute 'output_shape' in AffineGridOp should be >= " "4. But received output_shape's size=[%d].", outputShape.GetData().size())); PADDLE_ENFORCE_LE( outputShape.GetData().size(), 5, phi::errors::InvalidArgument( "The size of attribute 'output_shape' in AffineGridOp should be <= " "5. But received output_shape's size=[%d].", outputShape.GetData().size())); } PADDLE_ENFORCE_GE(theta_dims[1], 2, phi::errors::InvalidArgument( "The second dimesion of input 'theta' in AffineGridOp " "should be >= 2. " "But received second dimesion=[%d], dimesions=[%s]", theta_dims[1], theta_dims)); PADDLE_ENFORCE_LE(theta_dims[1], 3, phi::errors::InvalidArgument( "The second dimesion of input 'theta' in AffineGridOp " "should be <= 3. " "But received second dimesion=[%d], dimesions=[%s]", theta_dims[1], theta_dims)); PADDLE_ENFORCE_GE( theta_dims[2], 3, phi::errors::InvalidArgument( "The third dimesion of input 'theta' in AffineGridOp should be >= 3. " "But received third dimesion=[%d], dimesions=[%s]", theta_dims[2], theta_dims)); PADDLE_ENFORCE_LE( theta_dims[2], 4, phi::errors::InvalidArgument( "The third dimesion of input 'theta' in AffineGridOp should be <= 4. " "But received third dimesion=[%d], dimesions=[%s]", theta_dims[2], theta_dims)); if (outputShape.GetData().size() == 4 && !is_from_tensor) { // N * H * W * 2 output->set_dims(phi::make_ddim({theta_dims[0], -1, -1, 2})); } else { // N * D * H * W * 3 output->set_dims(phi::make_ddim({theta_dims[0], -1, -1, -1, 3})); } output->set_dtype(input.dtype()); output->share_lod(input); } void AllGatherInferMeta(const MetaTensor& x, int nranks, MetaTensor* out) { auto dim = x.dims(); dim[0] = dim[0] * nranks; if (dim[0] < 0) dim[0] = -1; out->set_dtype(x.dtype()); out->set_dims(dim); } void AllReduceInferMeta(const MetaTensor& x, MetaTensor* out) { out->set_dtype(x.dtype()); out->set_dims(x.dims()); } void ArgMinMaxInferMeta(const MetaTensor& x, const Scalar& axis, bool keepdims, bool flatten, int dtype, MetaTensor* out, MetaConfig config) { PADDLE_ENFORCE_EQ( (dtype < 0 || dtype == 2 || dtype == 3), true, phi::errors::InvalidArgument( "The attribute of dtype in argmin/argmax must be [%s] or [%s], but " "received [%s]", DataTypeToString(DataType::INT32), DataTypeToString(DataType::INT64), DataTypeToString(phi::TransToPhiDataType(dtype)))); if (!config.is_runtime && axis.FromTensor()) { std::vector vec; if (flatten) { if (keepdims) { vec = std::vector(x.dims().size(), -1); } else { vec = {}; } } else { if (keepdims) { vec = std::vector(x.dims().size(), -1); } else { vec = std::vector(x.dims().size() - 1, -1); } } out->set_dims(phi::make_ddim(vec)); if (dtype == 2) { out->set_dtype(DataType::INT32); } else if (dtype == 3) { out->set_dtype(DataType::INT64); } return; } auto int_axis = axis.to(); const auto& x_dims = x.dims(); auto x_rank = x.dims().size(); if (x_rank > 0) { PADDLE_ENFORCE_GE(int_axis, -x_rank, phi::errors::InvalidArgument( "'axis'(%d) must be greater than or equal to" " -Rank(X)(%d).", int_axis, -x_rank)); PADDLE_ENFORCE_LT( int_axis, x_rank, phi::errors::InvalidArgument( "'axis'(%d) must be less than Rank(X)(%d) of Input(X).", int_axis, x_rank)); } else { // 0-dim tensor PADDLE_ENFORCE_EQ(int_axis == 0 || int_axis == -1, true, phi::errors::InvalidArgument( "'axis'(%d) must be 0 or -1 if input tensor is " "0-dim.", int_axis)); } if (int_axis < 0) int_axis += x_rank; if (config.is_runtime) { if (dtype == phi::TransToProtoVarType(DataType::INT32)) { int64_t all_element_num = 0; if (flatten) { all_element_num = phi::product(x_dims); } else { all_element_num = x_dims[int_axis]; } PADDLE_ENFORCE_LE( all_element_num, INT_MAX, phi::errors::InvalidArgument( "The element num of the argmin/argmax input at axis is " "%d, is larger than int32 maximum value:%d, you must " "set the dtype of argmin/argmax to 'int64'.", all_element_num, INT_MAX)); } } std::vector vec; if (flatten) { if (keepdims) { vec = std::vector(x.dims().size(), 1); } else { vec = {}; } } else { for (int64_t i = 0; i < int_axis; i++) vec.emplace_back(x_dims[i]); if (keepdims) { vec.emplace_back(static_cast(1)); } for (int64_t i = int_axis + 1; i < x_rank; i++) vec.emplace_back(x_dims[i]); } out->set_dims(phi::make_ddim(vec)); if (dtype == 2) { out->set_dtype(DataType::INT32); } else if (dtype == 3) { out->set_dtype(DataType::INT64); } } void ArgsortInferMeta(const MetaTensor& input, int axis, bool descending, MetaTensor* output, MetaTensor* indices) { auto in_dims = input.dims(); auto num_dims = in_dims.size(); if (num_dims > 0) { PADDLE_ENFORCE_GE(axis, -num_dims, phi::errors::InvalidArgument( "'axis'(%d) must be greater than or equal to" " -num_dims(%d).", axis, -num_dims)); PADDLE_ENFORCE_LT( axis, num_dims, phi::errors::InvalidArgument( "'axis'(%d) must be less than num_dims(%d).", axis, num_dims)); } else { // 0-dim tensor PADDLE_ENFORCE_EQ( axis == 0 || axis == -1, 1, phi::errors::InvalidArgument( "'axis'(%d) must be 0 or -1 if input tensor is 0-dim.", axis)); } output->share_dims(input); output->set_dtype(input.dtype()); indices->share_dims(input); indices->set_dtype(DataType::INT64); output->share_lod(input); indices->share_lod(input); } void AsRealInferMeta(const MetaTensor& input, MetaTensor* output) { auto out_dims_v = phi::vectorize(input.dims()); out_dims_v.push_back(2); auto out_dims = phi::make_ddim(out_dims_v); output->set_dims(out_dims); output->share_lod(input); output->set_dtype(dtype::ToReal(input.dtype())); } void AsComplexInferMeta(const MetaTensor& input, MetaTensor* output) { auto in_dims = input.dims(); const int input_rank = in_dims.size(); PADDLE_ENFORCE_GE( input_rank, 1, phi::errors::InvalidArgument( "The rank of input(X) is less than 1. " "Expected the rank of input(X) to be equal to or greater than 1." "But received rank of input(X) = %d", input_rank)); const int last_dim_size = in_dims[input_rank - 1]; PADDLE_ENFORCE_EQ( last_dim_size, 2, phi::errors::InvalidArgument( "The size of the last dimension of input(X)" "does not equals 2." "Expected the size of last dimension of input(X) to be 2." "But received %d", last_dim_size)); const phi::DDim out_dims(in_dims.Get(), input_rank - 1); output->set_dims(out_dims); output->share_lod(input); } void BatchSizeLikeInferMeta(const MetaTensor& x, const std::vector& shape, int x_batch_size_dim, int out_batch_size_dim, MetaTensor* out) { PADDLE_ENFORCE_GT( shape.size(), 0UL, phi::errors::InvalidArgument( "Shape size must be larger than 0, but received: %s.", shape.size())); std::vector shape_int64(shape.size(), 0); std::transform(shape.begin(), shape.end(), shape_int64.begin(), [](int a) { return static_cast(a); }); auto output_dim = phi::make_ddim(shape_int64); int input_dim_size = static_cast(x.dims().size()); PADDLE_ENFORCE_GE( x_batch_size_dim, 0, phi::errors::InvalidArgument("Input dimension index must be larger " "equal than 0, but received: %s.", x_batch_size_dim)); PADDLE_ENFORCE_GT(input_dim_size, x_batch_size_dim, phi::errors::InvalidArgument( "Input dimension size must be larger than " "input dimension index, but received input " "dimension size: %s, input dimension index: %s.", input_dim_size, x_batch_size_dim)); int output_dim_size = static_cast(shape.size()); PADDLE_ENFORCE_GE( out_batch_size_dim, 0, phi::errors::InvalidArgument("Output dimension index must be larger " "equal than 0, but received: %s.", out_batch_size_dim)); PADDLE_ENFORCE_GT( output_dim_size, out_batch_size_dim, phi::errors::InvalidArgument( "Output dimension size must be larger than output dimension index, " "but received output dimension size: %s, output dimension index: " "%s.", output_dim_size, out_batch_size_dim)); output_dim[out_batch_size_dim] = x.dims()[x_batch_size_dim]; out->set_dims(output_dim); } void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out) { out->set_dims(x.dims()); out->set_dtype(out_dtype); out->set_layout(x.layout()); out->share_lod(x); } void CholeskyInferMeta(const MetaTensor& x, bool upper, MetaTensor* out) { auto dims = x.dims(); auto rank = dims.size(); PADDLE_ENFORCE_GE(rank, 2, errors::InvalidArgument( "The Input(X) should have at least 2 dimensions. But " "received a %d dimension tensor.", rank)); PADDLE_ENFORCE_EQ( dims[rank - 2], dims[rank - 1], errors::InvalidArgument( "The inner-most 2 dimensions of Input(X) all should be symmetric " "positive-definite matrices and have the same size. But received " "X's shape[-2] = %d and shape[-1] = %d.", dims[rank - 2], dims[rank - 1])); out->set_dims(x.dims()); out->set_dtype(x.dtype()); } void ClassCenterSampleInferMeta(const MetaTensor& label, int num_classes, int num_samples, int ring_id, int rank, int nranks, bool fix_seed, int seed, MetaTensor* remapped_label, MetaTensor* sampled_local_class_center) { PADDLE_ENFORCE_EQ( label.dims().size(), 1, errors::InvalidArgument("Rank of Input(Label) should be equal to 1, " "but the value given is %d.", label.dims().size())); PADDLE_ENFORCE_NOT_NULL(remapped_label, phi::errors::InvalidArgument( "output of remapped label should not be null.")); PADDLE_ENFORCE_NOT_NULL( sampled_local_class_center, phi::errors::InvalidArgument( "output of sampled local class center should not be null.")); remapped_label->set_dims(label.dims()); remapped_label->set_dtype(label.dtype()); sampled_local_class_center->set_dims(phi::make_ddim({num_samples})); sampled_local_class_center->set_dtype(label.dtype()); } void ClipByNormInferMeta(const MetaTensor& x, float max_norm, MetaTensor* out) { PADDLE_ENFORCE_GT( max_norm, 0, phi::errors::InvalidArgument("max_norm should be greater than 0. " "Received max_norm is %f.", max_norm)); out->set_dims(x.dims()); out->set_dtype(x.dtype()); out->share_lod(x); } void CreateLikeInferMeta(const MetaTensor& x, DataType dtype, MetaTensor* out) { out->set_dims(x.dims()); out->set_dtype(dtype == DataType::UNDEFINED ? x.dtype() : dtype); out->set_layout(x.layout()); } void CumInferMeta(const MetaTensor& x, int axis, bool flatten, bool exclusive, bool reverse, MetaTensor* out) { auto x_dims = x.dims(); if (flatten) { out->set_dims(phi::make_ddim({phi::product(x_dims)})); out->set_dtype(x.dtype()); } else { if (x_dims.size() > 0) { PADDLE_ENFORCE_GE( axis, -x_dims.size(), phi::errors::OutOfRange( "axis is out of range (expected to be in range of [%ld, " "%ld), but got %ld).", -(x_dims.size()), x_dims.size(), axis)); PADDLE_ENFORCE_LT( axis, x_dims.size(), phi::errors::OutOfRange( "axis is out of range (expected to be in range of [%ld, " "%ld), but got %ld).", -(x_dims.size()), x_dims.size(), axis)); } else { PADDLE_ENFORCE_EQ( (axis == 0 || axis == -1), true, errors::InvalidArgument("The axis must be -1 or 0 in 0D Tensor, " "but the value given is %d.", axis)); } out->set_dims(x_dims); out->set_dtype(x.dtype()); } out->share_lod(x); } void CumScalarAxisInferMeta(const MetaTensor& x, const Scalar& axis, bool flatten, bool exclusive, bool reverse, MetaTensor* out) { CumInferMeta(x, axis.to(), flatten, exclusive, reverse, out); } void CropInferMeta(const MetaTensor& x, const IntArray& shape, const IntArray& offsets, MetaTensor* out, MetaConfig config) { PADDLE_ENFORCE_NE( out, nullptr, errors::InvalidArgument("CropTensor should have output tensor out.")); auto x_dim = x.dims(); auto shape_dims = shape.GetData(); auto offsets_vec = offsets.GetData(); PADDLE_ENFORCE_EQ(shape_dims.size(), x_dim.size(), errors::InvalidArgument( "The number of elements (%d) of attribute 'shape' for " "CropTensor must be equal to the number of " "dimensions (%d) of the input.", shape_dims.size(), x_dim.size())); if (config.is_runtime) { out->share_lod(x); } auto out_dims = std::vector(shape.size(), -1); for (size_t i = 0; i < shape_dims.size(); ++i) { if (shape_dims[i] > 0) { out_dims[i] = static_cast(shape_dims[i]); } else { if (shape_dims[i] == -1 && offsets_vec[i] != -1 && x_dim[i] != -1) { out_dims[i] = x_dim[i] - static_cast(offsets_vec[i]); } } } out->set_dims(phi::make_ddim(out_dims)); out->set_dtype(x.dtype()); } void DecodeJpegInferMeta(const MetaTensor& x, const std::string& mode, MetaTensor* out) { std::vector out_dims; if (mode == "unchanged") { out_dims = {-1, -1, -1}; } else if (mode == "gray") { out_dims = {1, -1, -1}; } else if (mode == "rgb") { out_dims = {3, -1, -1}; } else { errors::Fatal("The provided mode is not supported for JPEG files on GPU: ", mode); } if (out != nullptr) { out->set_dims(phi::make_ddim(out_dims)); out->set_dtype(x.dtype()); } } void DiagEmbedInferMeta( const MetaTensor& x, int offset, int dim1, int dim2, MetaTensor* out) { auto x_dims = x.dims(); PADDLE_ENFORCE_GE( dim1, -(x_dims.size() + 1), phi::errors::OutOfRange( "Dim1 is out of range (expected to be in range of [%ld, " "%ld], but got %ld).", -(x_dims.size() + 1), x_dims.size(), dim1)); PADDLE_ENFORCE_LE( dim1, x_dims.size(), phi::errors::OutOfRange( "Dim1 is out of range (expected to be in range of [%ld, " "%ld], but got %ld).", -(x_dims.size() + 1), x_dims.size(), dim1)); PADDLE_ENFORCE_GE( dim2, -(x_dims.size() + 1), phi::errors::OutOfRange( "Dim2 is out of range (expected to be in range of [%ld, " "%ld], but got %ld).", -(x_dims.size() + 1), x_dims.size(), dim2)); PADDLE_ENFORCE_LE( dim2, x_dims.size(), phi::errors::OutOfRange( "Dim2 is out of range (expected to be in range of [%ld, " "%ld], but got %ld).", -(x_dims.size() + 1), x_dims.size(), dim2)); int dim1_ = dim1 < 0 ? x_dims.size() + dim1 + 1 : dim1; int dim2_ = dim2 < 0 ? x_dims.size() + dim2 + 1 : dim2; int offset_ = std::abs(offset); PADDLE_ENFORCE_NE(dim1_, dim2_, phi::errors::InvalidArgument( "diagonal dimensions should not be identical " "%ld vs %ld.", dim1, dim2)); int new_dim_len = offset_ + x_dims[x_dims.size() - 1]; auto sizes = vectorize(x_dims); sizes.pop_back(); sizes.insert(sizes.begin() + std::min(dim1_, dim2_), new_dim_len); sizes.insert(sizes.begin() + std::max(dim1_, dim2_), new_dim_len); out->set_dims(phi::make_ddim(sizes)); out->set_dtype(x.dtype()); } void DiagInferMeta(const MetaTensor& x, int offset, float padding_value, MetaTensor* out) { auto x_dims = x.dims(); if (x_dims.size() <= 1) { int64_t size_ = (x_dims.size() == 1UL ? x_dims[0] : 1) + std::abs(offset); out->set_dims({size_, size_}); out->set_dtype(x.dtype()); } else if (x_dims.size() == 2UL) { int64_t size_ = 0; if (offset >= 0) { // Note(LutaoChu): Do not use std::min here, otherwise the calculation // of `size_` will have unexpected result on Windows Python3.8 if (x_dims[0] < x_dims[1] - offset) { size_ = x_dims[0]; } else { size_ = x_dims[1] - offset; } } else { // Note(LutaoChu): Do not use std::min here, otherwise the calculation // of `size_` will have unexpected result on Windows Python3.8 if (x_dims[0] + offset < x_dims[1]) { size_ = x_dims[0] + offset; } else { size_ = x_dims[1]; } } out->set_dims({size_}); out->set_dtype(x.dtype()); } else { PADDLE_THROW(phi::errors::InvalidArgument( "The input tensor X's dimensions of DiagV2Op should be either 1 or " "2, but received %d.", x_dims.size())); } } void DiagonalInferMeta(const MetaTensor& input, int offset, int axis1, int axis2, MetaTensor* out) { auto x_dims = input.dims(); int offset_ = offset; int axis1_ = axis1 < 0 ? x_dims.size() + axis1 : axis1; int axis2_ = axis2 < 0 ? x_dims.size() + axis2 : axis2; PADDLE_ENFORCE_GE( x_dims.size(), 2, phi::errors::OutOfRange("Input's dim is out of range (expected at " "least 2 dimensions, but got %ld).", x_dims.size())); PADDLE_ENFORCE_LT( axis1_, x_dims.size(), phi::errors::OutOfRange( "Attr(axis1) is out of range (expected to be in range of [%ld, " "%ld], but got %ld).", -(x_dims.size()), (x_dims.size() - 1), axis1)); PADDLE_ENFORCE_GE( axis1_, 0, phi::errors::OutOfRange( "Attr(axis1) is out of range (expected to be in range of [%ld, " "%ld], but got %ld).", -(x_dims.size()), (x_dims.size() - 1), axis1)); PADDLE_ENFORCE_LT( axis2_, x_dims.size(), phi::errors::OutOfRange( "Attr(axis2) is out of range (expected to be in range of [%ld, " "%ld], but got %ld).", -(x_dims.size()), (x_dims.size() - 1), axis2)); PADDLE_ENFORCE_GE( axis2_, 0, phi::errors::OutOfRange( "Attr(axis2) is out of range (expected to be in range of [%ld, " "%ld], but got %ld).", -(x_dims.size()), (x_dims.size() - 1), axis2)); PADDLE_ENFORCE_NE( axis1_, axis2_, phi::errors::InvalidArgument("The dimensions should not be identical " "%d vs %d.", axis1, axis2)); auto out_dims = vectorize(x_dims); // from out_dims get the dim size of axis1_. auto axis1_size = out_dims[axis1_]; auto axis2_size = out_dims[axis2_]; // delete two dims by attr axis1 and axis2 from out_dims. /* example: out_dim = [2, 3, 4]; axis1 = 0; axis2 = 1; according to the attr of axis1 and axis2, we get: out_dim = [4]. */ out_dims.erase(out_dims.begin() + std::max(axis1_, axis2_)); out_dims.erase(out_dims.begin() + std::min(axis1_, axis2_)); if (offset_ == 0) { out_dims.push_back(std::min(axis1_size, axis2_size)); } else if (offset_ > 0) { if ((axis2_size - offset_) > 0) { out_dims.push_back(std::min(axis1_size, axis2_size - offset_)); } else { out_dims.push_back(0); } } else { if ((axis1_size + offset_) > 0) { out_dims.push_back(std::min(axis1_size + offset_, axis2_size)); } else { out_dims.push_back(0); } } out->set_dims(phi::make_ddim(out_dims)); } void DirichletInferMeta(const MetaTensor& alpha, MetaTensor* out) { const auto alpha_dim = alpha.dims(); PADDLE_ENFORCE_GE(alpha_dim.size(), 1, phi::errors::InvalidArgument( "ShapeError: The number of dimensions of 'Alpha' " "must be greater than or euqal to 1. " "But received Alpha's dimensions = %d,", alpha_dim.size())); out->set_dims(alpha_dim); out->set_dtype(alpha.dtype()); } void DistReduceInferMeta(const MetaTensor& x, MetaTensor* out) { out->set_dtype(x.dtype()); out->set_dims(x.dims()); } void DistBroadcastInferMeta(const MetaTensor& x, MetaTensor* out) { out->set_dtype(x.dtype()); out->set_dims(x.dims()); } void EigInferMeta(const MetaTensor& x, MetaTensor* out_w, MetaTensor* out_v) { phi::DDim x_dims = x.dims(); int rank = x_dims.size(); PADDLE_ENFORCE_GE( rank, 2, phi::errors::InvalidArgument("Expects input tensor x to be not less than " "2 dimentions, but got dimention %d", rank)); PADDLE_ENFORCE_EQ(x_dims[rank - 2], x_dims[rank - 1], phi::errors::InvalidArgument( "The input matrix must be a square matrix, " "but receive a matrix with %d rows and %d colums", x_dims[rank - 2], x_dims[rank - 1])); std::vector batch_dims_vec{}; for (int i = 0; i < rank - 1; ++i) { batch_dims_vec.emplace_back(x_dims[i]); } const DataType& x_dtype = x.dtype(); const DataType& out_dtype = IsComplexType(x_dtype) ? x_dtype : ToComplexType(x_dtype); out_w->set_dims(phi::make_ddim(batch_dims_vec)); out_w->set_dtype(out_dtype); out_v->set_dims(x_dims); out_v->set_dtype(out_dtype); } void EighInferMeta(const MetaTensor& x, const std::string& uplo, MetaTensor* out_w, MetaTensor* out_v) { auto input_dim = x.dims(); auto rank = input_dim.size(); PADDLE_ENFORCE_GE(rank, 2, phi::errors::InvalidArgument( "The Input(X) should have at least 2 dimensions." "But received a %d dimension tensor.", rank)); PADDLE_ENFORCE_EQ( input_dim[rank - 2], input_dim[rank - 1], phi::errors::InvalidArgument( "Eigh op is designed for square matrix, consequently" "inner-most 2 dimensions of Input(X) should be symmetric." "But received X's shape[-2] = %d and shape[-1] = %d.", input_dim[rank - 2], input_dim[rank - 1])); std::vector values_dim; for (auto i = 0; i < rank - 1; i++) { values_dim.emplace_back(input_dim[i]); } out_w->set_dims(phi::make_ddim(values_dim)); out_w->set_dtype(dtype::ToReal(x.dtype())); out_v->set_dims(input_dim); out_v->set_dtype(dtype::ToReal(x.dtype())); } void EigvalsInferMeta(const MetaTensor& x, MetaTensor* out, MetaConfig config) { auto x_dims = x.dims(); PADDLE_ENFORCE_GE(x_dims.size(), 2, errors::InvalidArgument( "The dimensions of Input(X) for Eigvals operator " "should be at least 2, " "but received X's dimension = %d, X's shape = [%s].", x_dims.size(), x_dims)); if (config.is_runtime || !phi::contain_unknown_dim(x_dims)) { int last_dim = x_dims.size() - 1; PADDLE_ENFORCE_EQ(x_dims[last_dim], x_dims[last_dim - 1], errors::InvalidArgument( "The last two dimensions of Input(X) for Eigvals " "operator should be equal, " "but received X's shape = [%s].", x_dims)); } auto out_dims = vectorize(x_dims); out_dims.resize(x_dims.size() - 1); const DataType& x_dtype = x.dtype(); const DataType& out_dtype = IsComplexType(x_dtype) ? x_dtype : ToComplexType(x_dtype); out->set_dims(make_ddim(out_dims)); out->set_dtype(out_dtype); } void EigvalshInferMeta(const MetaTensor& x, const std::string& uplo, bool is_test, MetaTensor* out_w, MetaTensor* out_v) { auto input_dim = x.dims(); auto rank = input_dim.size(); PADDLE_ENFORCE_GE( rank, 2, errors::InvalidArgument("The Input(X) should have at least 2 dimensions." "But received a %d dimension tensor.", rank)); PADDLE_ENFORCE_EQ( input_dim[rank - 2], input_dim[rank - 1], errors::InvalidArgument( "Eigvalsh op is designed for square matrix, consequently" "inner-most 2 dimensions of Input(X) should be symmetric." "But received X's shape[-2] = %d and shape[-1] = %d.", input_dim[rank - 2], input_dim[rank - 1])); std::vector values_dim; for (auto i = 0; i < rank - 1; i++) { values_dim.emplace_back(input_dim[i]); } if (out_w != nullptr) { out_w->set_dims(phi::make_ddim(values_dim)); out_w->set_dtype(dtype::ToReal(x.dtype())); } if (out_v != nullptr) { out_v->set_dims(input_dim); out_v->set_dtype(x.dtype()); } } void EinsumInferMeta(const std::vector& inputs, const std::string& equation, MetaTensor* out) { // collect the following informations to prepare einsum. LabelMap labelshape(0); LabelMap labeltype(LabelType::Reduction); std::vector label2perms(inputs.size(), LabelMap(-1)); std::vector all_labels; std::vector broadcast_dims; std::vector output_dims; std::vector> ellipsis_dims(2); std::vector input_dims; for (auto& i : inputs) { input_dims.push_back(i->dims()); } std::vector input_strs; std::string right; ParseEinsumEquation(equation, input_dims, &labelshape, &labeltype, &all_labels, &label2perms, &ellipsis_dims, &broadcast_dims, &output_dims, &right, &input_strs); VLOG(3) << "Einsum Infershape: input dims:" << paddle::string::join_strings(input_dims, "\n"); VLOG(3) << "Einsum Infershape: equation:" << equation; VLOG(3) << "Einsum Infershape: all_labels:" << paddle::string::join_strings(all_labels, ","); VLOG(3) << "Einsum Infershape: output dims:" << paddle::string::join_strings(output_dims, ","); VLOG(3) << "Label Type is : " << label_to_string(all_labels, labeltype); VLOG(3) << "Label Shape is : " << label_to_string(all_labels, labelshape); out->set_dims(make_ddim(output_dims)); out->set_dtype(inputs[0]->dtype()); } void EinsumRawInferMeta(const std::vector& inputs, const std::string& equation, MetaTensor* out, std::vector inner_cache, std::vector xshape) { EinsumInferMeta(inputs, equation, out); for (size_t i = 0; i < xshape.size(); ++i) { if (xshape[i] != nullptr) { xshape[i]->set_dims(inputs[i]->dims()); xshape[i]->set_dtype(inputs[i]->dtype()); } } } void ExpandInferMeta(const MetaTensor& x, const IntArray& shape, MetaTensor* out) { #define MAX_RANK_SUPPORTED 6 auto x_dims = x.dims(); auto expand_shape = shape.GetData(); if (expand_shape.size() == 0) { expand_shape = std::vector(x_dims.size(), -1); } PADDLE_ENFORCE_GE( expand_shape.size(), static_cast(x_dims.size()), phi::errors::InvalidArgument( "The number of elements (%d) of 'shape' for " "expand_v2 op must be greater than or equal to the rank " "(%d) of the input.", expand_shape.size(), static_cast(x_dims.size()))); PADDLE_ENFORCE_LE( expand_shape.size(), MAX_RANK_SUPPORTED, phi::errors::InvalidArgument("The number of elements (%d) of 'shape' for " "must not be greater than %d.", expand_shape.size(), MAX_RANK_SUPPORTED)); PADDLE_ENFORCE_GE( expand_shape.size(), 0, phi::errors::InvalidArgument("The number of elements (%d) of 'shape' for " "must be a positive integer.", expand_shape.size())); auto out_rank = std::max(static_cast(x_dims.size()), expand_shape.size()); std::vector out_shape(out_rank); for (size_t i = 0; i < expand_shape.size(); ++i) { if (x_dims[i] == -1) { out_shape[i] = -1; } else if (expand_shape[i] == -1) { if (static_cast(x_dims.size()) > i) { out_shape[i] = x_dims[i]; } else { out_shape[i] = -1; } } else if (expand_shape[i] == -2) { // We use -2 to represent the element in expand_shape is a var. out_shape[i] = -1; } else { PADDLE_ENFORCE_GT( expand_shape[i], 0, phi::errors::InvalidArgument( "The %uth element of 'shape' for expand_v2 op must be " "greater than 0, but the value given is %d.", i, expand_shape[i])); out_shape[i] = expand_shape[i]; } } out->set_dims(make_ddim(out_shape)); out->set_dtype(x.dtype()); if (out_rank > 0 && out_shape[0] == x_dims[0]) { out->share_lod(x); } } void FillDiagonalInferMeta( const MetaTensor& x, float value, int offset, bool wrap, MetaTensor* out) { PADDLE_ENFORCE_NE( out, nullptr, phi::errors::InvalidArgument("Tensor out should not be null if ")); auto x_dims = x.dims(); out->set_dims(x_dims); out->set_dtype(x.dtype()); } void FFTC2CInferMeta(const MetaTensor& x, const std::vector& axes, const std::string& normalization, bool forward, MetaTensor* out, MetaConfig config) { PADDLE_ENFORCE_NOT_NULL( out, phi::errors::InvalidArgument("Output of fft_c2c should not be null.")); // only ensure that fft axes' size greater than zero at runtime // they might be -1 to indicate unknown size ar compile time if (config.is_runtime) { const phi::DDim x_dim = x.dims(); for (size_t i = 0; i < axes.size(); i++) { PADDLE_ENFORCE_GT(x_dim[axes[i]], 0, phi::errors::InvalidArgument( "Invalid fft n-point (%d).", x_dim[axes[i]])); } } out->share_meta(x); } void FFTC2RInferMeta(const MetaTensor& x, const std::vector& axes, const std::string& normalization, bool forward, int64_t last_dim_size, MetaTensor* out, MetaConfig config) { PADDLE_ENFORCE_NOT_NULL( out, phi::errors::InvalidArgument("Output of fft_c2r should not be null.")); const phi::DDim x_dim = x.dims(); const int64_t last_fft_axis = axes.back(); // only ensure that fft axes' size greater than zero at runtime // they might be -1 to indicate unknown size ar compile time if (config.is_runtime) { size_t signal_dims = axes.size(); for (size_t i = 0; i < signal_dims - 1; i++) { PADDLE_ENFORCE_GT(x_dim[axes[i]], 0, phi::errors::InvalidArgument( "Invalid fft n-point (%d).", x_dim[axes[i]])); } } out->set_layout(x.layout()); out->set_dtype(ToRealType(x.dtype())); phi::DDim out_dim = x_dim; if (last_dim_size > 0) { out_dim.at(last_fft_axis) = last_dim_size; } else if (config.is_runtime) { const int64_t input_last_dim_size = x_dim[last_fft_axis]; const int64_t fft_n_point = (input_last_dim_size - 1) * 2; PADDLE_ENFORCE_GT( fft_n_point, 0, phi::errors::InvalidArgument("Invalid fft n-point (%d).", fft_n_point)); out_dim.at(last_fft_axis) = fft_n_point; } else { const int64_t input_last_dim_size = x_dim[last_fft_axis]; out_dim.at(last_fft_axis) = input_last_dim_size == -1 ? -1 : (input_last_dim_size - 1) * 2; } out->set_dims(out_dim); } void FFTR2CInferMeta(const MetaTensor& x, const std::vector& axes, const std::string& normalization, bool forward, bool onesided, MetaTensor* out, MetaConfig config) { PADDLE_ENFORCE_NOT_NULL( out, phi::errors::InvalidArgument("Output of fft_r2c should not be null.")); const phi::DDim x_dim = x.dims(); // only ensure that fft axes' size greater than zero at runtime // they might be -1 to indicate unknown size ar compile time if (config.is_runtime) { for (size_t i = 0; i < axes.size(); i++) { PADDLE_ENFORCE_GT(x_dim[axes[i]], 0, phi::errors::InvalidArgument( "Invalid fft n-point (%d).", x_dim[axes[i]])); } } out->set_layout(x.layout()); out->set_dtype(ToComplexType(x.dtype())); if (!onesided) { out->share_dims(x); } else { phi::DDim out_dim = x.dims(); const int64_t last_fft_axis = axes.back(); const int64_t last_fft_dim_size = x_dim[last_fft_axis]; out_dim.at(last_fft_axis) = last_fft_dim_size / 2 + 1; out->set_dims(out_dim); } } void FlattenInferMeta(const MetaTensor& x, int start_axis, int stop_axis, MetaTensor* out) { FlattenWithXShapeInferMeta(x, start_axis, stop_axis, out, nullptr); } void FlattenWithXShapeInferMeta(const MetaTensor& x, int start_axis, int stop_axis, MetaTensor* out, MetaTensor* xshape) { auto x_dims = x.dims(); int in_dims_size = x_dims.size(); if (in_dims_size == 0) { PADDLE_ENFORCE_EQ( start_axis == 0 || start_axis == -1, true, phi::errors::InvalidArgument("The start_axis should be 0 or -1 when " "the input tensor is a 0D-Tensor")); PADDLE_ENFORCE_EQ( stop_axis == 0 || stop_axis == -1, true, phi::errors::InvalidArgument("The stop_axis should be 0 or -1 when the " "input tensor is a 0D-Tensor")); // this can ensure out shape {1} start_axis = 0; stop_axis = -1; } if (start_axis < 0) { start_axis = start_axis + in_dims_size; } if (stop_axis < 0) { stop_axis = stop_axis + in_dims_size; } if (in_dims_size > 0) { PADDLE_ENFORCE_GE( stop_axis, start_axis, phi::errors::InvalidArgument("The stop_axis should be greater" "than or equal to start_axis.")); } int64_t outer = 1; std::vector out_shape; out_shape.reserve(in_dims_size - stop_axis + start_axis + 1); for (int i = 0; i < start_axis; ++i) { out_shape.push_back(x_dims[i]); } for (int i = start_axis; i <= stop_axis; i++) { if (x_dims[i] == -1 || outer == -1) { outer = -1; } else { outer *= x_dims[i]; } } out_shape.push_back(outer); for (int i = stop_axis + 1; i < in_dims_size; i++) { out_shape.push_back(x_dims[i]); } const auto& out_dims = phi::make_ddim(out_shape); out->set_dims(out_dims); out->set_dtype(x.dtype()); out->set_layout(x.layout()); if (x_dims[0] == out_dims[0]) { // Only pass LoD when the first dimension of output and Input(X) // are the same. out->share_lod(x); } if (xshape == nullptr) return; std::vector xshape_dims(x_dims.size() + 1); xshape_dims[0] = 0; for (int i = 0; i < x_dims.size(); ++i) { xshape_dims[i + 1] = x_dims[i]; } xshape->set_dims(phi::make_ddim(xshape_dims)); xshape->share_lod(x); } void FlipInferMeta(const MetaTensor& x, const std::vector& axis, MetaTensor* out) { auto x_dims = x.dims(); auto flip_dims = axis; size_t flip_dims_size = axis.size(); if (flip_dims_size > 0) { // check if dims axis within range auto min_max_d = std::minmax_element(flip_dims.begin(), flip_dims.end()); PADDLE_ENFORCE_LT(*min_max_d.first, x_dims.size(), phi::errors::InvalidArgument( "min(axes) should be less than the input tensor X's " "axes of FlipOp. But received min(axes) = %d, " "X's axes = %d, X's shape = [%s]", *min_max_d.first, x_dims.size(), x_dims)); PADDLE_ENFORCE_GE(*min_max_d.first, x_dims.size() * -1, phi::errors::InvalidArgument( "min(axes) should be greater than or equal to the " "input tensor X's " "axes of FlipOp times -1. But received " "min(axes) = %d, X's " "axes = %d, X's shape = [%s]", *min_max_d.first, x_dims.size() * -1, x_dims)); PADDLE_ENFORCE_LT(*min_max_d.second, x_dims.size(), phi::errors::InvalidArgument( "max(axes) should be less than the input tensor X's " "axes of FlipOp. But received max(axes) = %d, " "X's axes = %d, X's shape = [%s]", *min_max_d.second, x_dims.size(), x_dims)); PADDLE_ENFORCE_GE(*min_max_d.second, x_dims.size() * -1, phi::errors::InvalidArgument( "max(axes) should be greater than or equal to the " "input tensor X's " "axes of FlipOp times -1. But received " "max(axes) = %d, X's " "axes = %d, X's shape = [%s]", *min_max_d.second, x_dims.size() * -1, x_dims)); // check duplicates in dims flip_dims.erase(std::unique(flip_dims.begin(), flip_dims.end()), flip_dims.end()); PADDLE_ENFORCE_EQ(flip_dims.size(), flip_dims_size, phi::errors::InvalidArgument( "axes has duplicates, original flip axes size=%d, " "but unique flip axes size=%d.)", flip_dims_size, flip_dims.size())); } VLOG(3) << "flip operator x.shape=" << x_dims; std::vector output_dims(x_dims.size()); for (int i = 0; i < x_dims.size(); ++i) { output_dims[i] = x_dims[i]; } out->set_dims(phi::make_ddim(output_dims)); out->set_dtype(x.dtype()); out->share_lod(x); } void FoldInferMeta(const MetaTensor& x, const std::vector& output_sizes, const std::vector& kernel_sizes, const std::vector& strides, const std::vector& paddings, const std::vector& dilations, MetaTensor* out) { auto in_dims = x.dims(); PADDLE_ENFORCE_EQ( output_sizes.size(), 2, phi::errors::InvalidArgument( "It is expected output_size equals to 2, but got size %d", output_sizes.size())); PADDLE_ENFORCE_EQ( kernel_sizes.size(), 2, phi::errors::InvalidArgument( "It is expected kernel_size equals to 2, but got size %d", kernel_sizes.size())); PADDLE_ENFORCE_EQ( strides.size(), 2, phi::errors::InvalidArgument( "It is expected strides_size equals to 2, but got size %d", strides.size())); PADDLE_ENFORCE_EQ( paddings.size(), 4, phi::errors::InvalidArgument( "It is expected paddings_size equals to 4, but got size %d", paddings.size())); PADDLE_ENFORCE_EQ( dilations.size(), 2, phi::errors::InvalidArgument( "It is expected dilations_size equals to 2, but got size %d", dilations.size())); int output_height = output_sizes[0]; int output_width = output_sizes[1]; int kernel_height = kernel_sizes[0]; int kernel_width = kernel_sizes[1]; int dilation_height = dilations[0]; int dilation_width = dilations[1]; int stride_height = strides[0]; int stride_width = strides[1]; // check kernel_sizes PADDLE_ENFORCE_GT(kernel_height, 0, phi::errors::InvalidArgument( "The `kernel_sizes` should be greater than zero, " "but received kernel_height: %d kernel_width: %d.", kernel_sizes[0], kernel_sizes[1])); PADDLE_ENFORCE_GT(kernel_width, 0, phi::errors::InvalidArgument( "The `kernel_sizes` should be greater than zero, " "but received kernel_height: %d kernel_width: %d.", kernel_sizes[0], kernel_sizes[1])); // check strides PADDLE_ENFORCE_GT(stride_height, 0, phi::errors::InvalidArgument( "The `strides` should be greater than zero, " "but received strides_height: %d strides_width: %d.", strides[0], strides[1])); PADDLE_ENFORCE_GT(stride_width, 0, phi::errors::InvalidArgument( "The `strides` should be greater than zero, " "but received strides_height: %d strides_width: %d.", strides[0], strides[1])); // check dilations PADDLE_ENFORCE_GT(output_height, 1, phi::errors::InvalidArgument( "The `output_height` should be greater than one, " "but received output_height: %d .", output_height)); PADDLE_ENFORCE_GT(output_width, 1, phi::errors::InvalidArgument( "The `output_width` should be greater than one, " "but received output_width: %d .", output_width)); // check output size PADDLE_ENFORCE_GT( dilation_height, 0, phi::errors::InvalidArgument( "The `dilations` should be greater than zero, " "but received dilations_height: %d dilations_width: %d.", dilations[0], dilations[1])); PADDLE_ENFORCE_GT( dilation_width, 0, phi::errors::InvalidArgument( "The `dilations` should be greater than zero, " "but received dilations_height: %d dilations_width: %d.", dilations[0], dilations[1])); std::vector out_dims; // batch_size out_dims.push_back(in_dims[0]); // output_plane int output_channels = in_dims[1] / (kernel_width * kernel_height); out_dims.push_back(output_channels); int blocks_height = (output_sizes[0] + 2 * paddings[0] - (dilations[0] * (kernel_sizes[0] - 1) + 1)) / strides[0] + 1; int blocks_width = (output_sizes[1] + 2 * paddings[1] - (dilations[1] * (kernel_sizes[1] - 1) + 1)) / strides[1] + 1; // check output height and width PADDLE_ENFORCE_GT( blocks_height, 0, phi::errors::InvalidArgument( "The sliding blocks calculated from input spatial size (%d, %d), " "kernel_sizes (%d, %d), strides (%d, %d), dilations (%d, %d), " "is (%d, %d), which should be a positive integer.", in_dims[2], in_dims[3], kernel_sizes[0], kernel_sizes[1], strides[0], strides[1], dilations[0], dilations[1], output_height, output_width)); PADDLE_ENFORCE_GT( blocks_width, 0, phi::errors::InvalidArgument( "The sliding blocks calculated from input spatial size (%d, %d), " "kernel_sizes (%d, %d), strides (%d, %d), dilations (%d, %d), " "is (%d, %d), which should be a positive integer.", in_dims[2], in_dims[3], kernel_sizes[0], kernel_sizes[1], strides[0], strides[1], dilations[0], dilations[1], output_height, output_width)); PADDLE_ENFORCE_EQ( blocks_height * blocks_width, in_dims[2], phi::errors::InvalidArgument( "Given input output_size (%d, %d), " "kernel_sizes (%d, %d), strides (%d, %d), dilations (%d, %d), " "which should be expected size of input's dimension " "2 to match the calculated number of %d * %d = %d, but got %d", output_height, output_width, kernel_sizes[0], kernel_sizes[1], strides[0], strides[1], dilations[0], dilations[1], blocks_height, blocks_width, blocks_height * blocks_width, in_dims[2])); PADDLE_ENFORCE_EQ( in_dims[1] % (kernel_sizes[0] * kernel_sizes[1]), 0, phi::errors::InvalidArgument( "Expected size of input's dimension 1 to be divisible by the" "product of kernel_size, but got input.size(1)=%d and " "kernel_size=( %d" ", %d).", in_dims[1], kernel_sizes[0], kernel_sizes[1])); out_dims.push_back(output_height); out_dims.push_back(output_width); if (out != nullptr) { out->set_dims(phi::make_ddim(out_dims)); out->set_dtype(x.dtype()); } } void FrameInferMeta(const MetaTensor& x, int frame_length, int hop_length, int axis, MetaTensor* out, MetaConfig config) { PADDLE_ENFORCE_NOT_NULL(out, phi::errors::InvalidArgument( "Output(Out) of FrameOp should not be null.")); const auto x_dims = x.dims(); const int x_rank = x_dims.size(); PADDLE_ENFORCE_GE(x_rank, 1, phi::errors::InvalidArgument( "Input(X) of FrameOp should be a tensor which contains " "at least 1 dimension, but got rank %s.", x_rank)); PADDLE_ENFORCE_GT(hop_length, 0, phi::errors::InvalidArgument( "Attribute(hop_length) of FrameOp should be greater " "than 0, but got %s.", hop_length)); PADDLE_ENFORCE_EQ( (axis == 0 || axis == -1), true, phi::errors::InvalidArgument( "Attribute(axis) of FrameOp should 0 or -1, but got %s.", axis)); std::vector output_shape; int seq_length; int n_frames; int start_axis; int end_axis; if (axis == 0) { seq_length = x_dims[0]; start_axis = 1; end_axis = x_rank - 1; } else { seq_length = x_dims[x_rank - 1]; start_axis = 0; end_axis = x_rank - 2; } bool contain_unknown_dim = phi::contain_unknown_dim(x_dims); bool check = config.is_runtime || !contain_unknown_dim; if (check) { PADDLE_ENFORCE_LE(frame_length, seq_length, phi::errors::InvalidArgument( "Attribute(frame_length) of FrameOp should be less " "equal than sequence length, but got (%s) > (%s).", frame_length, seq_length)); } // It won't go into for loop when x_rank == 1U. for (int i = start_axis; i <= end_axis; i++) { output_shape.push_back(x_dims[i]); } if (seq_length == -1) { n_frames = -1; } else { n_frames = 1 + (seq_length - frame_length) / hop_length; } if (axis == 0) { // (n_frames, frame_length, ...) output_shape.insert(output_shape.begin(), frame_length); output_shape.insert(output_shape.begin(), n_frames); } else { // (..., frame_length, n_frames) output_shape.push_back(frame_length); output_shape.push_back(n_frames); } out->set_dims(phi::make_ddim(output_shape)); out->set_dtype(x.dtype()); } void FullBatchSizeLikeInferMeta(const MetaTensor& x, const std::vector& shape, const Scalar& val, DataType dtype, int x_batch_size_dim, int out_batch_size_dim, MetaTensor* out) { BatchSizeLikeInferMeta(x, shape, x_batch_size_dim, out_batch_size_dim, out); out->set_dtype(dtype); } void GumbelSoftmaxInferMeta(const MetaTensor& x, float temperature, bool hard, int axis, MetaTensor* out) { UnchangedInferMetaCheckAxis(x, axis, out); } void HistogramInferMeta( const MetaTensor& input, int64_t bins, int min, int max, MetaTensor* out) { PADDLE_ENFORCE_GE(bins, 1, phi::errors::InvalidArgument( "The bins should be greater than or equal to 1." "But received nbins is %d", bins)); PADDLE_ENFORCE_GE( max, min, phi::errors::InvalidArgument("max must be larger or equal to min." "But received max is %d, min is %d", max, min)); out->set_dims({bins}); out->share_lod(input); out->set_dtype(DataType::INT64); } void IdentityLossInferMeta(const MetaTensor& x, int reduction, MetaTensor* out) { if (reduction == 2) { out->set_dtype(x.dtype()); out->set_dims(x.dims()); } else { out->set_dims(phi::make_ddim({1})); out->set_dtype(x.dtype()); } } void IncrementInferMeta(const MetaTensor& x, float value, MetaTensor* out) { PADDLE_ENFORCE_EQ( product(x.dims()), 1UL, errors::InvalidArgument("The number of elements in Input(X) should be 1." "Now the number is %d.", product(x.dims()))); out->set_dims(x.dims()); out->share_lod(x); out->set_dtype(x.dtype()); } static phi::DDim ValidateShape(const std::vector shape, const phi::DDim& in_dims) { const int64_t in_size = phi::product(in_dims); auto in_dims_vec = phi::vectorize(in_dims); std::vector output_shape(shape.size(), 0); int64_t capacity = 1; int unk_dim_idx = -1; for (size_t i = 0; i < shape.size(); ++i) { if (shape[i] == -1) { // only one dimension can be set to -1, whose size will be infered. PADDLE_ENFORCE_EQ( unk_dim_idx, -1, phi::errors::InvalidArgument( "Only one dimension value of 'shape' in ReshapeOp can " "be -1. But received shape = [%s], shape[%d] is also -1.", phi::make_ddim(shape), i)); unk_dim_idx = i; output_shape[i] = shape[i]; } else if (shape[i] == 0) { if (static_cast(i) < in_dims.size()) { output_shape[i] = in_dims[i]; } else { PADDLE_ENFORCE_EQ( in_size, 0, phi::errors::InvalidArgument("If The index of 0 in `shape` >= " "the input tensor X's dimensions, " "It can only be Zero-Sized Tensor")); } capacity *= output_shape[i]; } else { PADDLE_ENFORCE_GT( shape[i], 0, phi::errors::InvalidArgument( "Each dimension value of 'shape' in ReshapeOp must not " "be negative except one unknown dimension. " "But received shape = [%s], shape[%d] = %d.", phi::make_ddim(shape), i, shape[i])); output_shape[i] = shape[i]; capacity *= output_shape[i]; } } if (capacity == 0) { PADDLE_ENFORCE_EQ(in_size, 0, phi::errors::InvalidArgument( "Only Zero-Size Tensor'shape can contain 0")); PADDLE_ENFORCE_EQ(unk_dim_idx, -1, phi::errors::InvalidArgument( "can not rehsape %s to %s, because the unspecified " "dimension %i can be any number and is ambiguous", in_dims, phi::make_ddim(shape), unk_dim_idx)); } bool no_negative = std::all_of(in_dims_vec.cbegin(), in_dims_vec.cend(), [](int64_t i) { return i >= 0; }); if (unk_dim_idx != -1) { // in compile time, no_negative may be False. if (no_negative) { output_shape[unk_dim_idx] = in_size / capacity; PADDLE_ENFORCE_EQ( output_shape[unk_dim_idx] * capacity, in_size, phi::errors::InvalidArgument( "The 'shape' attribute in ReshapeOp is invalid. " "The input tensor X'size must be divisible by known " "capacity of 'shape'. " "But received X's shape = [%s], X's size = %d, " "'shape' is [%s], known capacity of 'shape' is %d.", in_dims, in_size, phi::make_ddim(shape), capacity)); } else { // such as [-1, 8, 3]->[-1, 8], out_shape will remain [-1, 8] output_shape[unk_dim_idx] = -1; } } else { if (no_negative) { PADDLE_ENFORCE_EQ( capacity, in_size, phi::errors::InvalidArgument( "The 'shape' in ReshapeOp is invalid. " "The input tensor X'size must be equal to the capacity of " "'shape'. " "But received X's shape = [%s], X's size = %d, 'shape' is " "[%s], the capacity of 'shape' is %d.", in_dims, in_size, phi::make_ddim(shape), capacity)); } } return phi::make_ddim(output_shape); } void InferMetaFromVecValue(const MetaTensor& x, const std::vector& shape, MetaTensor* out) { auto x_dims = x.dims(); auto out_dims = ValidateShape(shape, x_dims); out->set_dims(out_dims); out->set_dtype(x.dtype()); out->set_layout(x.layout()); if (x_dims.size() > 0 && (x_dims[0] == out_dims[0])) { // Only pass LoD when the first dimension of output and Input(X) // are the same. out->share_lod(x); } } void InverseInferMeta(const MetaTensor& x, MetaTensor* out) { auto input_dims = x.dims(); int64_t input_rank = input_dims.size(); PADDLE_ENFORCE_GE( input_rank, 2, errors::InvalidArgument( "The dimension of Input(Input) is expected to be no less than 2. " "But received: Input(Input)'s dimension = %d, shape = [%s].", input_rank, input_dims)); for (int64_t i = 0; i < input_rank; ++i) { PADDLE_ENFORCE_EQ( (input_dims[i] == -1) || (input_dims[i] > 0), true, errors::InvalidArgument( "Each dimension of input tensor is expected to be -1 or a " "positive number, but received %d. Input's shape is [%s].", input_dims[i], input_dims)); } if (input_dims[input_rank - 2] > 0 && input_dims[input_rank - 1] > 0) { PADDLE_ENFORCE_EQ(input_dims[input_rank - 2], input_dims[input_rank - 1], errors::InvalidArgument( "The last two dimensions are expected to be equal. " "But received: %d and %d; " "Input(Input)'s shape = [%s].", input_dims[input_rank - 2], input_dims[input_rank - 1], input_dims)); } out->set_dims(input_dims); out->set_dtype(x.dtype()); out->share_lod(x); } void IsEmptyInferMeta(const MetaTensor& x, MetaTensor* out) { out->set_dims(phi::make_ddim({1})); out->set_dtype(DataType::BOOL); } void IsfiniteInferMeta(const MetaTensor& x, MetaTensor* out) { out->set_dims(x.dims()); out->set_dtype(DataType::BOOL); } void KthvalueInferMeta(const MetaTensor& x, int k, int axis, bool keepdim, MetaTensor* out, MetaTensor* indices, MetaConfig config) { auto input_dims = x.dims(); const int& dim_size = input_dims.size(); if (dim_size > 0) { PADDLE_ENFORCE_LT(axis, dim_size, phi::errors::InvalidArgument( "the axis must be [-%d, %d), but received %d .", dim_size, dim_size, axis)); PADDLE_ENFORCE_GE(axis, -dim_size, phi::errors::InvalidArgument( "the axis must be [-%d, %d), but received %d .", dim_size, dim_size, axis)); } else if (dim_size == 0) { // 0-dim tensor PADDLE_ENFORCE_EQ(axis == 0 || axis == -1, true, phi::errors::InvalidArgument( "'axis'(%d) must be 0 or -1 if input tensor is " "0-dim.", axis)); } if (axis < 0) axis += dim_size; PADDLE_ENFORCE_GE( k, 1, phi::errors::InvalidArgument( "the k in the kthvalue must >= 1, but received %d .", k)); PADDLE_ENFORCE_GE( input_dims.size(), 0, phi::errors::InvalidArgument("input of kthvalue must have >= 0d shape")); if (dim_size > 0 && config.is_runtime) { PADDLE_ENFORCE_GE( input_dims[axis], k, phi::errors::InvalidArgument( "input of kthvalue must have >= %d columns in axis of %d", k, axis)); } std::vector dimvec; for (int64_t i = 0; i < axis; i++) { dimvec.emplace_back(input_dims[i]); } if (keepdim && dim_size > 0) { dimvec.emplace_back(static_cast(1)); } for (int64_t i = axis + 1; i < dim_size; i++) { dimvec.emplace_back(input_dims[i]); } DDim dims = phi::make_ddim(dimvec); out->set_dims(dims); out->share_lod(x); out->set_dtype(x.dtype()); indices->set_dims(dims); indices->share_lod(x); indices->set_dtype(x.dtype()); } void LogsumexpInferMeta(const MetaTensor& input, const std::vector& axis, bool keepdim, bool reduce_all, MetaTensor* out) { auto input_rank = input.dims().size(); // only supoort 0~4D, due to eigen template compile slow PADDLE_ENFORCE_LE( input_rank, 4, errors::InvalidArgument("The input tensor X's dimensions of logsumexp " "should be less or equal than 4. ")); ReduceInferMetaBase(input, axis, keepdim, reduce_all, out); } void MatrixPowerInferMeta(const MetaTensor& x, int n, MetaTensor* out) { auto dims = x.dims(); auto n_dim = dims.size(); PADDLE_ENFORCE_GE(n_dim, 2, phi::errors::InvalidArgument( "The Input(X) should have at least 2 dimensions. But " "received a %d dimension tensor.", n_dim)); for (int i = 0; i < n_dim; ++i) PADDLE_ENFORCE_NE( dims[i], 0, phi::errors::InvalidArgument("The size of Input(X) should not be 0.")); PADDLE_ENFORCE_EQ(dims[n_dim - 2], dims[n_dim - 1], phi::errors::InvalidArgument( "The inner-most 2 dimensions of Input(X) all should " "be square matrices " "But received X's shape[-2] = %d and shape[-1] = %d.", dims[n_dim - 2], dims[n_dim - 1])); out->set_dims(dims); out->share_lod(x); out->set_dtype(x.dtype()); } void LUInferMeta(const MetaTensor& x, bool pivot, MetaTensor* out, MetaTensor* pivots, MetaTensor* infos) { auto x_dims = x.dims(); int x_rank = x_dims.size(); PADDLE_ENFORCE_NOT_NULL( out, phi::errors::InvalidArgument("Output(Out) should not be nullptr.")); PADDLE_ENFORCE_GE( x_rank, 2, phi::errors::InvalidArgument("The rank of input must greater than 2.")); out->set_dims(x_dims); out->set_dtype(x.dtype()); int m = x_dims[x_rank - 1]; int n = x_dims[x_rank - 2]; int min_mn = std::min(m, n); auto dims_vec = phi::vectorize(x_dims); PADDLE_ENFORCE_NOT_NULL( infos, phi::errors::InvalidArgument("Output(Infos) should not be nullptr.")); if (x_rank == 2) { auto Infos_dim = std::vector(1); infos->set_dims(phi::make_ddim(Infos_dim)); } else { auto Infos_dim = std::vector(dims_vec.begin(), dims_vec.begin() + x_rank - 2); infos->set_dims(phi::make_ddim(Infos_dim)); } infos->set_dtype(DataType::INT32); if (pivot) { PADDLE_ENFORCE_NOT_NULL( pivots, phi::errors::InvalidArgument("Output(Pivots) should not be nullptr.")); auto Pivots_dim = std::vector(dims_vec.begin(), dims_vec.begin() + x_rank - 1); Pivots_dim[x_rank - 2] = min_mn; pivots->set_dims(phi::make_ddim(Pivots_dim)); pivots->set_dtype(DataType::INT32); } } void MatrixRankInferMeta(const MetaTensor& x, bool hermitian, bool use_default_tol, MetaTensor* out) { auto dim_x = x.dims(); PADDLE_ENFORCE_GE(dim_x.size(), 2, phi::errors::InvalidArgument( "The dims of input must be greater than 2.")); if (hermitian) { int rows = dim_x[dim_x.size() - 2]; int cols = dim_x[dim_x.size() - 1]; PADDLE_ENFORCE_EQ(rows, cols, phi::errors::InvalidArgument( "if hermitian == true, matrix should be n*n")); } DDim dim_x_batch = detail::CheckAndGetOutputDim(dim_x); out->set_dims(dim_x_batch); out->share_lod(x); } void MaxOutInferMeta(const MetaTensor& x, int groups, int axis, MetaTensor* out) { auto in_x_dims = x.dims(); // check groups > 1 PADDLE_ENFORCE_GT( groups, 1, phi::errors::InvalidArgument("Attr(groups) of Op(maxout) should be " "larger than 1. But received %d.", groups)); PADDLE_ENFORCE_EQ( axis == 1 || axis == -1 || axis == 3, true, phi::errors::InvalidArgument( "axis only supported 1, -1 or 3, but recevied axis is: %d.", axis)); PADDLE_ENFORCE_EQ(in_x_dims.size(), 4, phi::errors::InvalidArgument( "x's dims should be 4, but received x's dims is: %d.", in_x_dims.size())); if (axis < 0) { axis += in_x_dims.size(); } PADDLE_ENFORCE_EQ( in_x_dims[axis] % groups, 0, phi::errors::InvalidArgument( "The number of input channels for Op(maxout) " "should be divisible by Attr(groups). But received: the " "input's channels is [%d], the shape of input is [%s], " "the Attr(groups) is [%d], the Attr(axis) is [%d]. The " "error may come from wrong Attr(groups) or Attr(axis) setting.", in_x_dims[axis], in_x_dims, groups, axis)); std::vector output_shape( {in_x_dims[0], in_x_dims[1], in_x_dims[2], in_x_dims[3]}); output_shape[axis] = in_x_dims[axis] / groups; out->set_dims(phi::make_ddim(output_shape)); out->set_dtype(x.dtype()); } void MaxPoolWithIndexInferMeta(const MetaTensor& x, const std::vector& kernel_size, const std::vector& strides, const std::vector& paddings, bool global_pooling, bool adaptive, MetaTensor* out, MetaTensor* mask, MetaConfig config) { std::vector paddings_ = paddings; std::vector kernel_size_ = kernel_size; auto x_dims = x.dims(); PADDLE_ENFORCE(x_dims.size() == 4 || x_dims.size() == 5, errors::InvalidArgument("Pooling intput should be 4-D or " "5-D tensor but received %dD-Tensor", x_dims.size())); if (global_pooling) { kernel_size_.resize(static_cast(x_dims.size()) - 2); for (size_t i = 0; i < kernel_size_.size(); ++i) { paddings_[i] = 0; kernel_size_[i] = static_cast(x_dims[i + 2]); } } PADDLE_ENFORCE_EQ( x_dims.size() - kernel_size_.size(), 2U, errors::InvalidArgument( "The input size %d minus the kernel size %d should equal to 2.", x_dims.size(), kernel_size_.size())); PADDLE_ENFORCE_EQ( kernel_size_.size(), strides.size(), errors::InvalidArgument( "Strides size %d and pooling size %d should be the same.", strides.size(), kernel_size_.size())); PADDLE_ENFORCE_EQ( kernel_size_.size(), paddings_.size(), errors::InvalidArgument( "Paddings size %d and pooling size %d should be the same.", paddings_.size(), kernel_size_.size())); std::vector output_shape({x_dims[0], x_dims[1]}); if (adaptive) { output_shape.insert( output_shape.end(), kernel_size_.begin(), kernel_size_.end()); } else { for (size_t i = 0; i < kernel_size_.size(); ++i) { if ((!config.is_runtime) && (x_dims[i + 2] < 0)) { output_shape.push_back(x_dims[i + 2]); } else { output_shape.push_back(funcs::MaxPoolOutputSize( x_dims[i + 2], kernel_size_[i], paddings_[i], strides[i])); } } } out->set_dims(make_ddim(output_shape)); out->set_dtype(x.dtype()); mask->set_dims(make_ddim(output_shape)); mask->set_dtype(phi::CppTypeToDataType::Type()); } void MeanAllInferMeta(const MetaTensor& x, MetaTensor* out) { out->set_dims(phi::make_ddim({1})); out->set_dtype(x.dtype()); out->set_layout(x.layout()); } void ModeInferMeta(const MetaTensor& x, int axis, bool keepdim, MetaTensor* out, MetaTensor* indices) { auto input_dims = x.dims(); const int& dim_size = input_dims.size(); PADDLE_ENFORCE_LE(axis, dim_size, phi::errors::InvalidArgument( "the axis must be [-%d, %d), but received %d .", dim_size, dim_size, axis)); if (dim_size > 0) { PADDLE_ENFORCE_GE(axis, -dim_size, phi::errors::InvalidArgument( "the axis must be [-%d, %d), but received %d .", dim_size, dim_size, axis)); } PADDLE_ENFORCE_GE( input_dims.size(), 0, errors::InvalidArgument("input of ModeOp must have >= 0d shape")); if (axis < 0) axis += dim_size; std::vector dimvec; for (int64_t i = 0; i < axis; i++) { dimvec.emplace_back(input_dims[i]); } if (keepdim && dim_size > 0) { dimvec.emplace_back(static_cast(1)); } for (int64_t i = axis + 1; i < dim_size; i++) { dimvec.emplace_back(input_dims[i]); } DDim dims = phi::make_ddim(dimvec); out->set_dims(dims); out->share_lod(x); out->set_dtype(x.dtype()); indices->set_dims(dims); indices->share_lod(x); indices->set_dtype(x.dtype()); } void MultinomialInferMeta(const MetaTensor& x, const Scalar& num_samples, bool replacement, MetaTensor* out, MetaConfig config) { auto int_num_samples = num_samples.to(); auto x_dim = x.dims(); int64_t x_rank = x_dim.size(); PADDLE_ENFORCE_GT(x_rank, 0, errors::InvalidArgument( "The number of dimensions of the input probability " "distribution should be > 0, but got %d.", x_rank)); PADDLE_ENFORCE_LE(x_rank, 2, errors::InvalidArgument( "The number of dimensions of the input probability " "distribution should be <= 2, but got %d.", x_rank)); std::vector out_dims(x_rank); for (int64_t i = 0; i < x_rank - 1; i++) { out_dims[i] = x_dim[i]; } if (config.is_runtime || !num_samples.FromTensor()) { PADDLE_ENFORCE_GT(int_num_samples, 0, errors::InvalidArgument( "The number of samples should be > 0, but got %d.", int_num_samples)); out_dims[x_rank - 1] = int_num_samples; } else { out_dims[x_rank - 1] = -1; } out->set_dims(make_ddim(out_dims)); out->set_dtype(DataType::INT64); } void NanmedianInferMeta(const MetaTensor& x, const IntArray& axes, bool keep_dim, MetaTensor* out, MetaTensor* median_index) { std::vector axis_list = axes.GetData(); auto x_dim = x.dims(); int64_t x_rank = x_dim.size(); out->set_dtype(x.dtype()); median_index->set_dtype(DataType::INT64); median_index->set_dims(make_ddim({x.numel() * 2})); std::vector out_dim; if (axis_list.empty()) { if (keep_dim) { for (int64_t i = 0; i < x_rank; i++) { out_dim.push_back(1); } } else { out_dim.push_back(1); } } else { std::vector cleaned_axis; for (auto& axis : axis_list) { if (axis < 0) axis += x_rank; PADDLE_ENFORCE_LT( axis, x_rank, errors::InvalidArgument( "Attr(axis) value should be in range [-R, R-1], R is " "the rank of Input(X). But received axis: %d, R: %d. " "Current Input(X)'s shape is=[%s].", axis, x_rank, x_dim)); PADDLE_ENFORCE_EQ( std::find(cleaned_axis.begin(), cleaned_axis.end(), axis), cleaned_axis.end(), errors::InvalidArgument("Attr(axes) has duplicated elements: %d.", static_cast(axis))); cleaned_axis.push_back(axis); } for (int64_t i = 0; i < x_rank; i++) { if (std::find(cleaned_axis.begin(), cleaned_axis.end(), i) == cleaned_axis.end()) { out_dim.push_back(x_dim[i]); } else if (keep_dim) { out_dim.push_back(1); } } } out->set_dims(make_ddim(out_dim)); } void NMSInferMeta(const MetaTensor& x, float threshold, MetaTensor* out) { auto boxes_dim = x.dims(); PADDLE_ENFORCE_EQ(boxes_dim.size(), 2, phi::errors::InvalidArgument( "The Input Boxes must be 2-dimention " "whose shape must be [N, 4] " "N is the number of boxes " "in last dimension in format [x1, x2, y1, y2]. ")); out->set_dims(phi::make_ddim({-1})); out->set_dtype(DataType::INT64); } void NonZeroInferMeta(const MetaTensor& condition, MetaTensor* out) { auto rank = condition.dims().size(); PADDLE_ENFORCE_GE( rank, 1UL, phi::errors::InvalidArgument( "Input(Condition) should have number of dimension at least 1")); out->set_dims(phi::make_ddim({-1, rank})); out->set_dtype(DataType::INT64); } void NormInferMeta(const MetaTensor& x, int axis, float epsilon, bool is_test, MetaTensor* out, MetaTensor* norm) { auto xdim = x.dims(); out->set_dims(x.dims()); out->set_dtype(x.dtype()); if (is_test == false) { if (axis < 0) axis = xdim.size() + axis; xdim[axis] = 1; norm->set_dims(xdim); norm->set_dtype(x.dtype()); } } void OneHotRawInferMeta(const MetaTensor& x, const Scalar& depth, DataType dtype, bool allow_out_of_range, MetaTensor* out) { auto x_dims = x.dims(); PADDLE_ENFORCE_GE( x_dims.size(), 0, phi::errors::InvalidArgument("Rank of Input(X) should be at least 0.")); auto out_dims_vec = phi::vectorize(x_dims); out_dims_vec.push_back(depth.to()); auto out_dims = phi::make_ddim(out_dims_vec); out->set_dims(out_dims); out->share_lod(x); out->set_dtype(dtype); } void OneHotInferMeta(const MetaTensor& x, const Scalar& depth_t, MetaTensor* out) { auto x_dims = x.dims(); PADDLE_ENFORCE_GE( x_dims.size(), 0, phi::errors::InvalidArgument("Rank of Input(X) should be at least 0.")); int depth = depth_t.to(); auto out_dims_vec = phi::vectorize(x_dims); out_dims_vec.push_back(depth); auto out_dims = phi::make_ddim(out_dims_vec); out->set_dims(out_dims); out->share_lod(x); out->set_dtype(phi::DataType::FLOAT32); } void OverlapAddInferMeta(const MetaTensor& x, int hop_length, int axis, MetaTensor* out, MetaConfig config) { const auto x_dims = x.dims(); const int x_rank = x_dims.size(); PADDLE_ENFORCE_GE( x_rank, 2, errors::InvalidArgument( "Input(X) of OverlapAddOp should be a tensor which contains " "at least 2 dimensions, but got rank %s.", x_rank)); PADDLE_ENFORCE_GT( hop_length, 0, errors::InvalidArgument( "Attribute(hop_length) of OverlapAddOp should be greater " "than 0, but got %s.", hop_length)); PADDLE_ENFORCE_EQ( (axis == 0 || axis == -1), true, errors::InvalidArgument( "Attribute(axis) of OverlapAddOp should 0 or -1, but got %s.", axis)); std::vector output_shape; int n_frames; int frame_length; int seq_length; int start_axis; int end_axis; if (axis == 0) { n_frames = x_dims[0]; frame_length = x_dims[1]; start_axis = 2; end_axis = x_rank - 1; } else { n_frames = x_dims[x_rank - 1]; frame_length = x_dims[x_rank - 2]; start_axis = 0; end_axis = x_rank - 3; } bool contain_unknown_dim = phi::contain_unknown_dim(x_dims); bool check = config.is_runtime || !contain_unknown_dim; if (check) { PADDLE_ENFORCE_LE( hop_length, frame_length, errors::InvalidArgument( "Attribute(hop_length) of OverlapAddOp should be less or equal " "than frame_length, but got hop_length(%s) > frame_length(%s).", hop_length, frame_length)); } if (n_frames == -1) { seq_length = -1; } else { seq_length = (n_frames - 1) * hop_length + frame_length; } // It won't go into for loop when x_rank == 2U. for (int i = start_axis; i <= end_axis; i++) { output_shape.push_back(x_dims[i]); } if (axis == 0) { // (seq_length, ...) output_shape.insert(output_shape.begin(), seq_length); } else { // (..., seq_length) output_shape.push_back(seq_length); } out->set_dims(phi::make_ddim(output_shape)); } void PadInferMeta(const MetaTensor& input, const std::vector& paddings, const Scalar& padding_value, MetaTensor* out, MetaConfig config) { auto x_dim = input.dims(); PADDLE_ENFORCE_EQ( static_cast(paddings.size()), x_dim.size() * 2, phi::errors::InvalidArgument( "Size of 'paddings' dimension should be equal to 2 * size of " "Input(X)'s dimension, but received (size of 'paddings' dimension " "is) %d vs (2 * size of Input(X)'s dimension is) %d.", static_cast(paddings.size()), x_dim.size() * 2)); for (size_t i = 0; i < paddings.size(); ++i) { PADDLE_ENFORCE_GE(paddings[i], 0, phi::errors::InvalidArgument( "The element of 'paddings' should >= 0, but " "received %d for index %d.", paddings[i], static_cast(i))); } std::vector out_dims(x_dim.size()); for (int i = 0; i < x_dim.size(); ++i) { if ((!config.is_runtime) && (x_dim[i] == -1)) { out_dims[i] = -1; } else { out_dims[i] = x_dim[i] + paddings[i * 2] + paddings[i * 2 + 1]; } } out->set_dims(phi::make_ddim(out_dims)); if (out_dims[0] == x_dim[0]) { // Only pass LoD when the first dimension is equal between // output and input. out->share_lod(input); } out->set_dtype(input.dtype()); } void Pad3dInferMeta(const MetaTensor& x, const IntArray& paddings_int_array, const std::string& mode, float value, const std::string& data_format, MetaTensor* out, MetaConfig config) { auto x_dim = x.dims(); PADDLE_ENFORCE_EQ(x_dim.size(), 5, errors::InvalidArgument( "The size of Input(X)'s dimension should be equal to " "5, but received %d. ", x_dim.size())); std::vector out_dims(x_dim.size(), -1); out_dims[0] = x_dim[0]; auto& paddings = paddings_int_array.GetData(); if (data_format == "NCDHW") { out_dims[1] = x_dim[1]; } else { out_dims[4] = x_dim[4]; } if (paddings_int_array.FromTensor()) { if (config.is_runtime) { PADDLE_ENFORCE_EQ( paddings.size(), 6, errors::InvalidArgument("Shape of Input(Paddings) should be equal to " "[6], but received [%d].", paddings.size())); if (data_format == "NCDHW") { out_dims[2] = x_dim[2] + paddings[4] + paddings[5]; out_dims[3] = x_dim[3] + paddings[2] + paddings[3]; out_dims[4] = x_dim[4] + paddings[0] + paddings[1]; } else { out_dims[1] = x_dim[1] + paddings[4] + paddings[5]; out_dims[2] = x_dim[2] + paddings[2] + paddings[3]; out_dims[3] = x_dim[3] + paddings[0] + paddings[1]; } } } else { PADDLE_ENFORCE_EQ( paddings.size(), 6, errors::InvalidArgument( "Size of paddings should be equal to 6, but received %d.", static_cast(paddings.size()))); if (data_format == "NCDHW") { out_dims[2] = ((!config.is_runtime) && (x_dim[2] < 0)) ? x_dim[2] : (x_dim[2] + paddings[4] + paddings[5]); // depth out_dims[3] = ((!config.is_runtime) && (x_dim[3] < 0)) ? x_dim[3] : (x_dim[3] + paddings[2] + paddings[3]); // height out_dims[4] = ((!config.is_runtime) && (x_dim[4] < 0)) ? x_dim[4] : (x_dim[4] + paddings[0] + paddings[1]); // width } else { // NDHWC out_dims[1] = ((!config.is_runtime) && (x_dim[1] < 0)) ? x_dim[1] : (x_dim[1] + paddings[4] + paddings[5]); // depth out_dims[2] = ((!config.is_runtime) && (x_dim[2] < 0)) ? x_dim[2] : (x_dim[2] + paddings[2] + paddings[3]); // height out_dims[3] = ((!config.is_runtime) && (x_dim[3] < 0)) ? x_dim[3] : (x_dim[3] + paddings[0] + paddings[1]); // width } } out->set_dims(phi::make_ddim(out_dims)); out->set_dtype(x.dtype()); out->share_lod(x); } void PixelShuffleInferMeta(const MetaTensor& x, int upscale_factor, const std::string& data_format, MetaTensor* out) { auto input_dims = x.dims(); PADDLE_ENFORCE_EQ(input_dims.size(), 4, phi::errors::InvalidArgument( "Input should be a 4-D tensor of format [N, C, H, W] " "or [N, H, W, C], but got %u.", input_dims.size())); PADDLE_ENFORCE_NE( upscale_factor, 0, phi::errors::InvalidArgument("upscale_factor should not be 0.")); const bool channel_last = (data_format == "NHWC"); if (!channel_last) { PADDLE_ENFORCE_EQ(input_dims[1] % (upscale_factor * upscale_factor), 0, phi::errors::InvalidArgument( "The square of upscale_factor[%u] should divide the " "number of channel[%u]", upscale_factor * upscale_factor, input_dims[1])); } else { PADDLE_ENFORCE_EQ(input_dims[3] % (upscale_factor * upscale_factor), 0, phi::errors::InvalidArgument( "The square of upscale_factor[%u] should divide the " "number of channel[%u]", upscale_factor * upscale_factor, input_dims[3])); } auto output_dims = input_dims; output_dims[0] = input_dims[0]; if (!channel_last) { output_dims[1] = input_dims[1] / (upscale_factor * upscale_factor); output_dims[2] = input_dims[2] * upscale_factor; output_dims[3] = input_dims[3] * upscale_factor; } else { output_dims[1] = input_dims[1] * upscale_factor; output_dims[2] = input_dims[2] * upscale_factor; output_dims[3] = input_dims[3] / (upscale_factor * upscale_factor); } out->set_dtype(x.dtype()); out->set_dims(output_dims); } void PixelShuffleGradInferMeta(const MetaTensor& out_grad, int upscale_factor, const std::string& data_format, MetaTensor* x_grad) { auto do_dims = out_grad.dims(); PADDLE_ENFORCE_EQ(do_dims.size(), 4, phi::errors::InvalidArgument( "Input should be a 4-D tensor of format [N, C, H, W] " "or [N, H, W, C], but got %u.", do_dims.size())); const bool channel_last = (data_format == "NHWC"); auto dx_dims = do_dims; dx_dims[0] = do_dims[0]; if (!channel_last) { dx_dims[1] = do_dims[1] * (upscale_factor * upscale_factor); dx_dims[2] = do_dims[2] / upscale_factor; dx_dims[3] = do_dims[3] / upscale_factor; } else { dx_dims[1] = do_dims[1] / upscale_factor; dx_dims[2] = do_dims[2] / upscale_factor; dx_dims[3] = do_dims[3] * (upscale_factor * upscale_factor); } x_grad->set_dims(dx_dims); x_grad->set_dtype(out_grad.dtype()); } void PixelUnshuffleInferMeta(const MetaTensor& x, int downscale_factor, const std::string& data_format, MetaTensor* out) { auto input_dims = x.dims(); PADDLE_ENFORCE_EQ(input_dims.size(), 4, phi::errors::InvalidArgument( "Input should be a 4-D tensor of format [N, C, H, W] " "or [N, H, W, C], but got %u.", input_dims.size())); PADDLE_ENFORCE_GE(downscale_factor, 1, phi::errors::InvalidArgument( "downscale_factor should be larger than 0.")); PADDLE_ENFORCE_EQ(data_format == "NCHW" || data_format == "NHWC", true, phi::errors::InvalidArgument( "data_format must be one of " "NCHW and NHWC. But recevied data_format: %s", data_format)); const bool channel_last = (data_format == "NHWC"); if (!channel_last) { PADDLE_ENFORCE_EQ( (input_dims[2] % downscale_factor) == 0 && (input_dims[3] % downscale_factor) == 0, true, phi::errors::InvalidArgument("Downscale factor[%u] should divide both " "height[%u] and width[%u]", downscale_factor, input_dims[2], input_dims[3])); } else { PADDLE_ENFORCE_EQ( (input_dims[1] % downscale_factor) == 0 && (input_dims[2] % downscale_factor) == 0, true, phi::errors::InvalidArgument("Downscale factor[%u] should divide both " "height[%u] and width[%u]", downscale_factor, input_dims[1], input_dims[2])); } auto output_dims = input_dims; output_dims[0] = input_dims[0]; if (!channel_last) { output_dims[1] = input_dims[1] * (downscale_factor * downscale_factor); output_dims[2] = input_dims[2] / downscale_factor; output_dims[3] = input_dims[3] / downscale_factor; } else { output_dims[1] = input_dims[1] / downscale_factor; output_dims[2] = input_dims[2] / downscale_factor; output_dims[3] = input_dims[3] * (downscale_factor * downscale_factor); } out->set_dtype(x.dtype()); out->set_dims(output_dims); } void PNormInferMeta(const MetaTensor& x, float porder, int axis, float epsilon, bool keepdim, bool asvector, MetaTensor* out) { auto x_dim = x.dims(); auto x_rank = x_dim.size(); PADDLE_ENFORCE_GE(axis, -x_rank, errors::InvalidArgument( "Attr(axis) value should be in range [-R, R-1], R is " "the rank of Input(X). But received axis: %d, R: %d. " "Current Input(X)'s shape is=[%s].", axis, x_rank, x_dim)); PADDLE_ENFORCE_LT(axis, x_rank, errors::InvalidArgument( "Attr(axis) value should be in range [-R, R-1], R is " "the rank of Input(X). But received axis: %d, R: %d. " "Current Input(X)'s shape is=[%s].", axis, x_rank, x_dim)); std::vector reduce_dims; if (asvector) { reduce_dims.emplace_back(1); if (keepdim) { for (int i = 1; i < x_dim.size(); ++i) { reduce_dims.emplace_back(1); } x_dim = phi::make_ddim(reduce_dims); } } else { if (axis < 0) axis = x_dim.size() + axis; for (int i = 0; i < x_dim.size(); ++i) { if (i != axis) reduce_dims.emplace_back(x_dim[i]); } if (reduce_dims.size() == 0) { reduce_dims.emplace_back(1); } x_dim[axis] = 1; } if (keepdim) { out->set_dims(x_dim); } else { out->set_dims(phi::make_ddim(reduce_dims)); } out->set_dtype(x.dtype()); } void Pool2DInferMeta(const MetaTensor& x, const IntArray& kernel_size, const std::vector& strides, const std::vector& paddings, bool ceil_mode, bool exclusive, const std::string& data_format, const std::string& pooling_type, bool global_pooling, bool adaptive, const std::string& padding_algorithm, MetaTensor* out, MetaConfig config) { const bool channel_last = (config.is_run_mkldnn_kernel == false) && (data_format == "NHWC" || data_format == "NDHWC"); if (!config.is_runtime && kernel_size.FromTensor()) { auto x_dims = x.dims(); std::vector output_shape = std::move(phi::vectorize(x_dims)); // set dims of HW -1 output_shape[x_dims.size() - 2] = -1; if (channel_last) { // for NHWC, NDHWC output_shape[x_dims.size() - 3] = -1; } else { // for NCHW output_shape[x_dims.size() - 1] = -1; } out->set_dims(make_ddim(output_shape)); out->share_lod(x); out->set_dtype(x.dtype()); } else { std::vector kernel_size_val(kernel_size.GetData().begin(), kernel_size.GetData().end()); PoolInferMeta(x, kernel_size_val, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm, out, config); } } void PSendInferMeta(const MetaTensor& x, int peer) { LOG(INFO) << "SendBaseInferMeta begin"; PADDLE_ENFORCE_GE( peer, 0, errors::InvalidArgument( "The peer (%d) for p_send op must be non-negative.", peer)); } void PSendArrayInferMeta(const MetaTensor& x, int peer) { PADDLE_ENFORCE_GE( peer, 0, errors::InvalidArgument( "The peer (%d) for p_send op must be non-negative.", peer)); } void PoolInferMeta(const MetaTensor& x, const std::vector& kernel_size, const std::vector& strides, const std::vector& paddings, bool ceil_mode, bool exclusive, const std::string& data_format, const std::string& pooling_type, bool global_pooling, bool adaptive, const std::string& padding_algorithm, MetaTensor* out, MetaConfig config) { std::vector paddings_ = paddings; std::vector kernel_size_ = kernel_size; auto x_dims = x.dims(); PADDLE_ENFORCE_EQ( x_dims.size() == 4 || x_dims.size() == 5, true, errors::InvalidArgument( "the input of Op(pool) should be 4-D or 5-D Tensor. But " "received: %u-D Tensor and it's shape is [%s].", x_dims.size(), x_dims)); PADDLE_ENFORCE_EQ(x_dims.size() - kernel_size_.size(), 2U, errors::InvalidArgument( "the dimension of input minus the size of " "Attr(kernel_size_) must be euqal to 2 in Op(pool). " "But received: the dimension of input minus the size " "of Attr(kernel_size_) is %d, the " "input's dimension is %d, the shape of input " "is [%s], the Attr(kernel_size_)'s size is %d, the " "Attr(kernel_size_) is [%s].", x_dims.size() - kernel_size_.size(), x_dims.size(), x_dims, kernel_size_.size(), make_ddim(kernel_size_))); PADDLE_ENFORCE_EQ( kernel_size_.size(), strides.size(), errors::InvalidArgument( "the size of Attr(kernel_size_) and Attr(strides) in " "Op(pool) must be equal. " "But received: Attr(kernel_size_)'s size is %d, Attr(strides)'s " "size is %d, Attr(kernel_size_) is [%s], Attr(strides)is [%s].", kernel_size_.size(), strides.size(), make_ddim(kernel_size_), make_ddim(strides))); // MKL-DNN Kernels are using NCHW order of dims description // so we ignore data_format consideration for MKL-DNN kernel const bool channel_last = (config.is_run_mkldnn_kernel == false) && (data_format == "NHWC" || data_format == "NDHWC"); // update paddings if "SAME" or global_pooling DDim data_dims; if (channel_last) { data_dims = slice_ddim(x_dims, 1, x_dims.size() - 1); } else { data_dims = slice_ddim(x_dims, 2, x_dims.size()); } funcs::UpdatePadding(&paddings_, global_pooling, adaptive, padding_algorithm, data_dims, strides, kernel_size_); if (global_pooling) { funcs::UpdateKernelSize(&kernel_size_, data_dims); } std::vector output_shape; if (adaptive) { output_shape.insert( output_shape.end(), kernel_size_.begin(), kernel_size_.end()); } else { for (int i = 0; i < data_dims.size(); ++i) { if ((!config.is_runtime) && (data_dims[i] < 0)) { output_shape.push_back(data_dims[i]); } else { output_shape.push_back(funcs::PoolOutputSize(data_dims[i], kernel_size_[i], paddings_[2 * i], paddings_[2 * i + 1], strides[i], ceil_mode)); } } } // output_N = input_N output_shape.insert(output_shape.begin(), x_dims[0]); // output_C = input_C if (channel_last) { output_shape.push_back(x_dims[x_dims.size() - 1]); } else { output_shape.insert(output_shape.begin() + 1, x_dims[1]); } out->set_dims(make_ddim(output_shape)); out->share_lod(x); out->set_dtype(x.dtype()); } void RealAndImagInferMeta(const MetaTensor& x, MetaTensor* out) { out->set_dims(x.dims()); out->set_dtype(dtype::ToReal(x.dtype())); out->set_layout(x.layout()); } void QrInferMeta(const MetaTensor& x, const std::string& mode, MetaTensor* q, MetaTensor* r) { auto x_dims = x.dims(); int x_rank = x_dims.size(); PADDLE_ENFORCE_GE( x_dims.size(), 2, phi::errors::InvalidArgument("the rank of input must greater than 2")); bool compute_q; bool reduced_mode; int m = x_dims[x_rank - 2]; int n = x_dims[x_rank - 1]; int min_mn = std::min(m, n); std::tie(compute_q, reduced_mode) = phi::funcs::ParseQrMode(mode); if (compute_q) { int k = reduced_mode ? min_mn : m; auto q_dims_vec = phi::vectorize(x_dims); q_dims_vec[q_dims_vec.size() - 1] = k; q->set_dims(phi::make_ddim(q_dims_vec)); } else { q->set_dims(phi::make_ddim({0})); } int k = reduced_mode ? min_mn : m; auto r_dims_vec = phi::vectorize(x_dims); r_dims_vec[r_dims_vec.size() - 2] = k; r_dims_vec[r_dims_vec.size() - 1] = n; r->set_dims(phi::make_ddim(r_dims_vec)); q->share_lod(x); r->share_lod(x); q->set_dtype(x.dtype()); r->set_dtype(x.dtype()); } DDim ReduceInferDim(const MetaTensor& x, const std::vector& axis, bool keep_dim, bool reduce_all) { auto x_rank = x.dims().size(); std::vector formated_axis = axis; for (size_t i = 0; i < axis.size(); ++i) { if (x_rank == 0) { PADDLE_ENFORCE_EQ( axis[i] == 0 || axis[i] == -1, true, phi::errors::InvalidArgument( "When input 0D Tensor, the axis can only be -1, 0, None or []")); } else { PADDLE_ENFORCE_LT(axis[i], x_rank, errors::InvalidArgument( "The reduce dim index %d should be in the " "range [ -dimension(X), dimension(X) ) " "which dimesion = %d. But received dim index = %d.", i, x_rank, axis[i])); PADDLE_ENFORCE_GE(axis[i], -x_rank, errors::InvalidArgument( "The reduce dim index %d should be in the " "range [ -dimension(X), dimension(X) ) " "which dimesion = %d. But received dim index = %d.", i, x_rank, axis[i])); } if (axis[i] < 0) { formated_axis[i] = axis[i] + x_rank; } } bool full_dim = true; std::set dims_set(formated_axis.begin(), formated_axis.end()); for (int64_t i = 0; i < x_rank; ++i) { if (dims_set.find(i) == dims_set.end()) { full_dim = false; break; } } reduce_all = reduce_all || full_dim; std::vector out_dim_vector; if (keep_dim) { for (int64_t i = 0; i < x_rank; ++i) { if (reduce_all || dims_set.find(i) != dims_set.end()) { out_dim_vector.push_back(1); } else { out_dim_vector.push_back(x.dims().at(i)); } } } else { for (int64_t i = 0; i < x_rank; ++i) { if (reduce_all || dims_set.find(i) != dims_set.end()) { continue; } else { out_dim_vector.push_back(x.dims().at(i)); } } if (x_rank > 0 && out_dim_vector.size() == 0) { out_dim_vector.push_back(1); } } DDim out_dim = phi::make_ddim(out_dim_vector); return out_dim; } DDim ReduceInferDimForIntArrayAxis(const MetaTensor& x, const IntArray& axis, bool keep_dim, bool reduce_all) { std::vector vec_axis = axis.GetData(); std::vector vec_dim; if (reduce_all) { if (keep_dim) { vec_dim = std::vector(x.dims().size(), 1); } else { vec_dim = {1}; } } else { if (keep_dim) { vec_dim = std::vector(x.dims().size(), -1); } else { auto x_rank = static_cast(x.dims().size()); if (vec_axis.size() >= x_rank) { vec_dim = {-1}; } else { vec_dim = std::vector(x.dims().size() - vec_axis.size(), -1); } } } return phi::make_ddim(vec_dim); } void ReduceInferMeta(const MetaTensor& x, const std::vector& axis, bool keep_dim, MetaTensor* out) { bool reduce_all = false; if (axis.size() == 0) { reduce_all = true; } ReduceInferMetaBase(x, axis, keep_dim, reduce_all, out); } void ReduceInferMetaBase(const MetaTensor& x, const std::vector& axis, bool keep_dim, bool reduce_all, MetaTensor* out) { DDim out_dim = ReduceInferDim(x, axis, keep_dim, reduce_all); out->set_dims(out_dim); out->set_dtype(x.dtype()); out->set_layout(x.layout()); } void ReduceIntArrayAxisInferMetaBase(const MetaTensor& x, const IntArray& axis, bool keep_dim, bool reduce_all, MetaTensor* out, MetaConfig config) { if (config.is_runtime || !axis.FromTensor()) { ReduceInferMetaBase(x, axis.GetData(), keep_dim, reduce_all, out); } else { DDim out_dim = ReduceInferDimForIntArrayAxis(x, axis, keep_dim, reduce_all); out->set_dims(out_dim); out->set_dtype(x.dtype()); out->set_layout(x.layout()); } } void ReduceIntArrayAxisInferMeta(const MetaTensor& x, const IntArray& axis, bool keep_dim, MetaTensor* out, MetaConfig config) { bool reduce_all = false; if (axis.size() == 0) { reduce_all = true; } ReduceIntArrayAxisInferMetaBase(x, axis, keep_dim, reduce_all, out, config); } void ReduceScatterInferMeta(const MetaTensor& x, int nranks, MetaTensor* out) { auto dim = x.dims(); if (dim[0] > 0 || dim[0] < -1) { PADDLE_ENFORCE_EQ( dim[0] % nranks, 0, errors::InvalidArgument( "dim[0] (%d) is not divisible by nranks(%d)", dim[0], nranks)); dim[0] /= nranks; } out->set_dims(dim); out->set_dtype(x.dtype()); } void RepeatInterleaveInferMeta(const MetaTensor& x, int repeats, int dim, MetaTensor* out) { const auto& input_dim = x.dims(); auto output_dim = phi::vectorize(input_dim); auto n_dim = dim; if (n_dim < 0) n_dim += input_dim.size(); PADDLE_ENFORCE_LT( dim, input_dim.size(), phi::errors::OutOfRange( "Attr(dim) is out of range, It's expected " "to be in range of [%d, %d]. But received Attr(dim) = %d.", -input_dim.size(), input_dim.size() - 1, dim)); PADDLE_ENFORCE_GE( dim, (0 - input_dim.size()), phi::errors::OutOfRange( "Attr(dim) is out of range, It's expected " "to be in range of [%d, %d]. But received Attr(dim) = %d.", -input_dim.size(), input_dim.size() - 1, dim)); PADDLE_ENFORCE_GT( repeats, 0, phi::errors::InvalidArgument("repeats should be larger than zero")); PADDLE_ENFORCE_NOT_NULL( out, phi::errors::InvalidArgument( "repeat_interleave's output tensor can't be nullptr")); output_dim[n_dim] = input_dim[n_dim] * repeats; out->set_dims(phi::make_ddim(output_dim)); out->share_lod(x); out->set_dtype(x.dtype()); } void ReshapeInferMeta(const MetaTensor& x, const IntArray& shape, MetaTensor* out, MetaConfig config) { auto& shape_data = shape.GetData(); PADDLE_ENFORCE_NOT_NULL(out, phi::errors::InvalidArgument( "Output(Out) of ReshapeOp should not be null.")); if (!config.is_runtime && shape.FromTensor()) { out->set_dims(phi::make_ddim(shape_data)); out->share_lod(x); return; } InferMetaFromVecValue(x, shape_data, out); } void ReshapeWithXShapeInferMeta(const MetaTensor& x, const IntArray& shape, MetaTensor* out, MetaTensor* xshape, MetaConfig config) { PADDLE_ENFORCE_NOT_NULL( xshape, phi::errors::InvalidArgument( "Output(XShape) of ReshapeOp should not be null.")); const auto& x_dims = x.dims(); std::vector xshape_dims(x_dims.size() + 1); xshape_dims[0] = 0; for (int i = 0; i < x_dims.size(); ++i) { xshape_dims[i + 1] = x_dims[i]; } xshape->set_dims(phi::make_ddim(xshape_dims)); xshape->share_lod(x); ReshapeInferMeta(x, shape, out, config); } void ReverseInferMeta(const MetaTensor& x, const IntArray& axis, MetaTensor* out, MetaConfig config) { // NOTE(Aurelius84): In Reverse Op, output TensorMeta is always same // as input, so we only verify axis when it is not from Tensor or in // runtime. if (!config.is_runtime && axis.FromTensor()) { out->share_meta(x); return; } auto& axis_data = axis.GetData(); PADDLE_ENFORCE_NE(axis_data.empty(), true, phi::errors::InvalidArgument("'axis' can not be empty.")); const auto& x_dims = x.dims(); for (int a : axis_data) { PADDLE_ENFORCE_LT(a, x_dims.size(), phi::errors::OutOfRange( "The axis must be less than input tensor's rank. " "but got %d >= %d", a, x_dims.size())); PADDLE_ENFORCE_GE( a, -x_dims.size(), phi::errors::OutOfRange( "The axis must be greater than the negative number of " "input tensor's rank, but got %d < %d", a, -x_dims.size())); } out->share_meta(x); } void ReverseArrayInferMeta(const std::vector& x, const IntArray& axis, std::vector out, MetaConfig config) { if (!config.is_runtime && axis.FromTensor()) { return; } auto& axis_data = axis.GetData(); PADDLE_ENFORCE_EQ( axis_data.size(), 1, phi::errors::InvalidArgument( "The size of axis must be 1 when the Input(X) is LoDTensorArray, " "but received %d.", axis_data.size())); PADDLE_ENFORCE_EQ( axis_data[0], 0, phi::errors::InvalidArgument("The value of axis should be 1 when " "the Input(X) is LoDTensorArray, " "but received %d.", axis_data[0])); } void RollInferMeta(const MetaTensor& x, const IntArray& shifts, const std::vector& axis, MetaTensor* out) { auto shifts_data = shifts.GetData(); if (axis.size() != 0) { PADDLE_ENFORCE_EQ( axis.size(), shifts_data.size(), phi::errors::InvalidArgument("When dims.size() != 0, dims.size() " "should be equal to " "shifts.size(). But received " "dims.size() = %d, shifts.size() = %d", axis.size(), shifts_data.size())); } else { PADDLE_ENFORCE_EQ( shifts_data.size(), 1, phi::errors::InvalidArgument("When dims.size() == 0, shifts.size() " "should be equal to 1, But received " "shifts.size() = %d", shifts_data.size())); } out->set_dims(x.dims()); out->share_lod(x); out->set_dtype(x.dtype()); } void RReluInferMeta(const MetaTensor& x, float lower, float upper, bool is_test, MetaTensor* out, MetaTensor* noise) { auto x_dims = x.dims(); PADDLE_ENFORCE_GE(lower, 0, phi::errors::InvalidArgument( "The lower value should be greater than or equal to 0. " "But received lower value = %f.", lower)); PADDLE_ENFORCE_LE(upper, 1, phi::errors::InvalidArgument( "The upper value should be less than or equal to 1. " "But received upper value = %f.", upper)); PADDLE_ENFORCE_GE( upper, lower, phi::errors::InvalidArgument( "The upper value should be greater than or equal to lower value " "But received upper value = %f, lower value = %f.", upper, lower)); out->set_dims(x_dims); out->set_dtype(x.dtype()); out->set_layout(x.layout()); out->share_lod(x); if (noise != nullptr) { noise->set_dims(x_dims); noise->set_dtype(x.dtype()); noise->set_layout(x.layout()); } } void RReluGradInferMeta(const MetaTensor& out_grad, const MetaTensor& noise, MetaTensor* x_grad) { auto do_dims = out_grad.dims(); x_grad->set_dims(do_dims); x_grad->set_dtype(out_grad.dtype()); x_grad->share_lod(out_grad); } void SetValueInferMeta(const MetaTensor& x, MetaTensor* out) { auto in_dims = x.dims(); PADDLE_ENFORCE_LT( in_dims.size(), 7, phi::errors::InvalidArgument( "The rank of input should be less than 7, but received %d.", in_dims.size())); out->set_dims(in_dims); } void ShapeInferMeta(const MetaTensor& input, MetaTensor* out) { auto in_dim = input.dims(); out->set_dims(phi::make_ddim({in_dim.size()})); out->set_dtype(DataType::INT32); } void ShardIndexInferMeta(const MetaTensor& in, int index_num, int nshards, int shard_id, int ignore_value, MetaTensor* out, MetaConfig config) { auto x_dims = in.dims(); PADDLE_ENFORCE_GE( x_dims.size(), 2, phi::errors::InvalidArgument("Rank of Input(X) should be at least 2, " "but the value given is %d.", x_dims.size())); if (config.is_runtime || x_dims[x_dims.size() - 1] > 0) { PADDLE_ENFORCE_EQ(x_dims[x_dims.size() - 1], 1U, phi::errors::InvalidArgument( "The last dimension of Input(X) should be 1, " "but the value given is %d.", x_dims[x_dims.size() - 1])); } out->set_dims(x_dims); out->share_lod(in); out->set_dtype(in.dtype()); } void NumelInferMeta(const MetaTensor& input, MetaTensor* out) { out->set_dtype(DataType::INT64); out->set_dims(phi::make_ddim({})); } void SliceRawInferMeta(const MetaTensor& input, const std::vector& axes, const IntArray& starts_arr, const IntArray& ends_arr, const std::vector& infer_flags_t, const std::vector& decrease_axis, MetaTensor* out, MetaConfig config) { auto in_dims = input.dims(); PADDLE_ENFORCE_LT( in_dims.size(), 7, phi::errors::InvalidArgument("The rank of input should be less than 7.")); DDim out_dims(in_dims); std::vector infer_flags = infer_flags_t; if (infer_flags.empty()) { // Initialize infer_flags with 1. // To be compatible with other op tests in which infer_flags is not set. infer_flags = std::vector(axes.size(), 1); } auto new_axes = axes; for (auto& axis : new_axes) { if (axis < 0) { axis = std::max(int64_t(0), axis + int64_t(in_dims.size())); } } PADDLE_ENFORCE_EQ( axes.size(), starts_arr.size(), phi::errors::InvalidArgument( "The length of axes (%d) and length of starts (%d) should be same.", axes.size(), starts_arr.size())); PADDLE_ENFORCE_EQ( axes.size(), ends_arr.size(), phi::errors::InvalidArgument( "The length of axes (%d) and length of ends (%d) should be same.", axes.size(), ends_arr.size())); // 2.1 Check attrs. std::vector starts = starts_arr.GetData(); std::vector ends = ends_arr.GetData(); phi::funcs::CheckAndUpdateSliceAttrs( in_dims, new_axes, &starts, &ends, nullptr, &infer_flags); auto slice_dims = phi::funcs::GetSliceDims( in_dims, new_axes, starts, ends, nullptr, &infer_flags); if (config.is_runtime) { out_dims = phi::funcs::GetDecreasedDims( slice_dims, decrease_axis, &infer_flags); } else { out_dims = phi::funcs::GetDecreasedDims( slice_dims, decrease_axis, nullptr); } out->set_dims(out_dims); if (new_axes.size() > 0 && new_axes[0] != 0) { out->share_lod(input); } } void SoftmaxInferMeta(const MetaTensor& x, int axis, MetaTensor* out) { auto dim_x = x.dims(); auto rank_x = dim_x.size(); if (rank_x > 0) { PADDLE_ENFORCE_GE(axis, -rank_x, phi::errors::InvalidArgument( "Attr(axis) value should be in range [-R, R-1], " "R is the rank of Input(X).")); PADDLE_ENFORCE_LT(axis, rank_x, phi::errors::InvalidArgument( "Attr(axis) value should be in range [-R, R-1], " "R is the rank of Input(X).")); } else { PADDLE_ENFORCE_GE( axis, -1, phi::errors::InvalidArgument("Attr(axis) value should be in range [-1, " "0] when input is 0D Tensor ")); PADDLE_ENFORCE_LE( axis, 0, phi::errors::InvalidArgument("Attr(axis) value should be in range [-1, " "0] when input is 0D Tensor ")); } out->set_dims(x.dims()); out->set_dtype(x.dtype()); out->share_lod(x); } int GetSplitAxisValue(const MetaTensor& x, const Scalar& axis, MetaConfig config) { // Tensor has no value in static graph compile time if (axis.FromTensor() && !config.is_runtime) { return -1; } else { if (axis.dtype() == DataType::FLOAT32 || axis.dtype() == DataType::FLOAT64) { PADDLE_THROW( phi::errors::InvalidArgument("%s(): argument (position 3) must be " "int, but got %s", "split", "float")); // NOLINT } int axis_value = axis.to(); int rank = x.dims().size(); PADDLE_ENFORCE_EQ( axis_value >= -rank && axis_value < rank, true, phi::errors::InvalidArgument( "The axis is expected to be in range of [%d, %d), but got %d", -rank, rank, axis_value)); if (axis_value < 0) { axis_value = axis_value + rank; } return axis_value; } } void FillSplitOutDims(const MetaTensor& x, const int axis_value, const std::vector& sections_vec, std::vector* out) { std::vector out_dims(sections_vec.size(), x.dims()); if (x.dims().at(axis_value) > 0) { for (size_t i = 0; i < sections_vec.size(); ++i) { out_dims[i][axis_value] = sections_vec[i]; } } else { for (size_t i = 0; i < sections_vec.size(); ++i) { out_dims[i][axis_value] = -1; } } for (size_t i = 0; i < sections_vec.size(); ++i) { if (axis_value != 0) { // Only pass LoD when not spliting along the first dim. (*out)[i]->set_dtype(x.dtype()); (*out)[i]->set_dims(out_dims[i]); (*out)[i]->set_layout(x.layout()); (*out)[i]->share_lod(x); } else { (*out)[i]->set_dtype(x.dtype()); (*out)[i]->set_dims(out_dims[i]); (*out)[i]->set_layout(x.layout()); } } } void SplitInferMeta(const MetaTensor& x, const IntArray& sections, const Scalar& axis, std::vector out, MetaConfig config) { // get axis value int axis_value = GetSplitAxisValue(x, axis, config); auto sections_data = sections.GetData(); // fill out dims with -1 if ((sections.FromTensor() && !config.is_runtime) || axis_value == -1 || (axis_value >= 0 && x.dims().at(axis_value) <= 0)) { std::vector out_dims; if ((sections.FromTensor() && !config.is_runtime) || axis_value == -1) { out_dims = std::vector( sections_data.size(), phi::make_ddim(std::vector(x.dims().size(), -1))); } else { out_dims = std::vector(sections_data.size(), x.dims()); } for (size_t i = 0; i < sections_data.size(); ++i) { if (axis_value != 0) { // Only pass LoD when not spliting along the first dim. out[i]->set_dtype(x.dtype()); out[i]->set_dims(out_dims[i]); out[i]->set_layout(x.layout()); out[i]->share_lod(x); } else { out[i]->set_dtype(x.dtype()); out[i]->set_dims(out_dims[i]); out[i]->set_layout(x.layout()); } } } else { auto input_axis_dim = x.dims().at(axis_value); std::vector sections_vec; const int unknow_dim_val = -1; int unknow_dim_idx = -1; int num_of_unknow = 0; int sum_of_section = 0; for (size_t i = 0; i < sections_data.size(); ++i) { sections_vec.push_back(sections_data[i]); if (sections_data[i] == unknow_dim_val) { num_of_unknow++; unknow_dim_idx = i; } else { sum_of_section += sections_data[i]; } } PADDLE_ENFORCE_LE(num_of_unknow, 1, phi::errors::InvalidArgument( "Only one dimension value of Attr(num_or_sections) " "in SplitOp can be -1. " "But received Attr(num_or_sections) = [%s].", phi::make_ddim(sections_data))); if (unknow_dim_idx != -1) { // for example, input shape = [4 ,5], axis = 1, sections = [2, 3, -1]. // input_axis_dim = 5, sum_of_sections = 5. // the following check will fail. PADDLE_ENFORCE_LT( sum_of_section, input_axis_dim, phi::errors::InvalidArgument( "Sum of Attr(num_or_sections) other than unknown section " "must be less than the input's " "size " "along the split dimension. But received Attr(num_or_sections) " "= [%s], input(X)'s shape = [%s], Attr(dim) = %d.", phi::make_ddim(sections_data), x.dims(), axis_value)); sections_vec[unknow_dim_idx] = input_axis_dim - sum_of_section; } else { PADDLE_ENFORCE_EQ( sum_of_section, input_axis_dim, phi::errors::InvalidArgument( "Sum of Attr(num_or_sections) must be equal to the input's " "size " "along the split dimension. But received Attr(num_or_sections)" " = [%s], input(X)'s shape = [%s], Attr(dim) = %d.", phi::make_ddim(sections_data), x.dims(), axis_value)); } // fill out dims FillSplitOutDims(x, axis_value, sections_vec, &out); } } void SplitWithNumInferMeta(const MetaTensor& x, int num, const Scalar& axis, std::vector out, MetaConfig config) { int axis_value = GetSplitAxisValue(x, axis, config); // fill out dims with -1 if (axis_value == -1 || (axis_value >= 0 && x.dims().at(axis_value) <= 0)) { std::vector out_dims; if (axis_value == -1) { out_dims = std::vector( num, phi::make_ddim(std::vector(x.dims().size(), -1))); } else { out_dims = std::vector(num, x.dims()); } for (int i = 0; i < num; ++i) { if (axis_value != 0) { // Only pass LoD when not spliting along the first dim. out[i]->set_dtype(x.dtype()); out[i]->set_dims(out_dims[i]); out[i]->set_layout(x.layout()); out[i]->share_lod(x); } else { out[i]->set_dtype(x.dtype()); out[i]->set_dims(out_dims[i]); out[i]->set_layout(x.layout()); } } } else { auto input_axis_dim = x.dims().at(axis_value); // step1: get formated sections std::vector sections_vec; PADDLE_ENFORCE_NE( num, 0, phi::errors::InvalidArgument("Attr(num_or_sections) should not be 0.")); PADDLE_ENFORCE_EQ(input_axis_dim % num, 0, phi::errors::InvalidArgument( "The input's size along the split dimension " "must be evenly divisible by Attr(num_or_sections). " "But received Attr(num_or_sections) " "= %d, input(X)'s shape = [%s], Attr(dim) = %d.", num, x.dims(), axis_value)); for (int i = 0; i < num; ++i) { sections_vec.push_back(input_axis_dim / num); } // setp2: fill out dims FillSplitOutDims(x, axis_value, sections_vec, &out); } } void SquaredL2NormInferMeta(const MetaTensor& x, MetaTensor* out) { out->set_dims({1}); } void SqueezeInferMeta(const MetaTensor& x, const IntArray& axes, MetaTensor* out, MetaConfig config) { const auto& x_dims = x.dims(); // Check input tensor dims (<6) Eigen limit. PADDLE_ENFORCE_LE(x_dims.size(), 6, phi::errors::InvalidArgument( "The dimensions of Input(X) " "should be in the range of [1, 6] (Eigen limit)." "But received X's dimensions = %d, X's shape = [%s].", x_dims.size(), x_dims)); if (!config.is_runtime && axes.FromTensor()) { // compile time infershape, set all elements to -1. int output_size = x.dims().size() - axes.GetData().size(); std::vector vec_out_dims(output_size, -1); out->set_dims(phi::make_ddim(vec_out_dims)); } else { std::vector tmp; tmp.reserve(axes.GetData().size()); std::for_each(axes.GetData().begin(), axes.GetData().end(), [&tmp](const int64_t& t) { tmp.push_back(t); }); auto out_dims = funcs::GetOutputSqueezeShape(tmp, x_dims, false); out->set_dims(out_dims); if (x_dims[0] == out_dims[0]) { // Only pass LoD when the first dimension of output and Input(X) // are the same. out->share_lod(x); } } out->set_dtype(x.dtype()); } void SqueezeWithXShapeInferMeta(const MetaTensor& x, const IntArray& axes, MetaTensor* out, MetaTensor* xshape, MetaConfig config) { SqueezeInferMeta(x, axes, out, config); const auto& x_dims = x.dims(); std::vector xshape_dims(x_dims.size() + 1); xshape_dims[0] = 0; for (int i = 0; i < x_dims.size(); ++i) { xshape_dims[i + 1] = x_dims[i]; } if (xshape) { xshape->set_dims(phi::make_ddim(xshape_dims)); xshape->share_lod(x); xshape->set_dtype(x.dtype()); } } void StridedSliceRawInferMeta(const MetaTensor& x, const std::vector& axes, const IntArray& starts, const IntArray& ends, const IntArray& strides, const std::vector& infer_flags, const std::vector& decrease_axis, MetaTensor* out, MetaConfig config) { auto in_dims = x.dims(); PADDLE_ENFORCE_LT( in_dims.size(), 7, errors::InvalidArgument( "The dimension of StridedSlice operator's input should be less " "than 7, but received dimension is %d.", in_dims.size())); auto starts_ = starts.GetData(); auto ends_ = ends.GetData(); auto strides_ = strides.GetData(); auto starts_size = starts_.size(); auto ends_size = ends_.size(); auto strides_size = strides_.size(); for (size_t i = 0; i < axes.size(); ++i) { PADDLE_ENFORCE_GE( axes[i], 0, errors::InvalidArgument("The axis should be greater than or equal to 0." "But received %d of axes[%d]", axes[i], i)); PADDLE_ENFORCE_LT( axes[i], in_dims.size(), errors::InvalidArgument( "The axes should be less than or equal to input tensor's rank." "But received %d of axes[%d], input tensor shape [%d]", axes[i], i, in_dims.size())); } auto tensor_input = false; auto HasInput = [](const IntArray& arr) { return arr.FromTensor(); }; if (HasInput(starts) || HasInput(ends) || HasInput(strides)) { tensor_input = true; } if (!HasInput(ends)) { PADDLE_ENFORCE_EQ( ends_size, axes.size(), errors::InvalidArgument( "The size of ends attribute in StridedSlice operator is not " "equal to the size of axes attribute. The ends attribute's size " "is %d, axes attribute's size is %d.", ends_size, axes.size())); } if (!HasInput(starts)) { PADDLE_ENFORCE_EQ( starts_size, axes.size(), errors::InvalidArgument( "The size of starts attribute in StridedSlice operator is not " "equal to the size of axes attribute. The starts attribute's " "size is %d, axes attribute's size is %d.", starts_size, axes.size())); } if (!HasInput(strides)) { PADDLE_ENFORCE_EQ( strides_size, axes.size(), errors::InvalidArgument( "The size of strides attribute in StridedSlice operator is not " "equal to the size of axes attribute. The strides attribute's " "size is %d, axes attribute's size is %d.", strides_size, axes.size())); } // we need to analysis strided slice op is valid for // the parameter that we get from python front std::vector out_dims_vector(in_dims.size(), -1); if (!tensor_input || config.is_runtime) { phi::funcs::StridedSliceOutDims(starts_, ends_, strides_, axes, infer_flags, in_dims, decrease_axis, out_dims_vector.data(), axes.size(), true); } DDim out_dims(phi::make_ddim(out_dims_vector)); // generate new shape if (decrease_axis.size() > 0) { std::vector new_out_shape; for (size_t i = 0; i < decrease_axis.size(); ++i) { if (config.is_runtime && infer_flags[i] != -1) { PADDLE_ENFORCE_EQ(out_dims[decrease_axis[i]], 1, errors::InvalidArgument( "the size of decrease dimension should be 1, " "but received %d.", out_dims[decrease_axis[i]])); } out_dims[decrease_axis[i]] = 0; } for (int i = 0; i < out_dims.size(); ++i) { if (out_dims[i] != 0) { new_out_shape.push_back(out_dims[i]); } } out_dims = phi::make_ddim(new_out_shape); } VLOG(4) << "out_dims: " << out_dims; out->set_dims(out_dims); out->share_lod(x); out->set_dtype(x.dtype()); } void StridedSliceInferMeta(const MetaTensor& x, const std::vector& axes, const IntArray& starts, const IntArray& ends, const IntArray& strides, MetaTensor* out, MetaConfig config) { std::vector infer_flags(axes.size(), 1); std::vector decrease_axis; StridedSliceRawInferMeta( x, axes, starts, ends, strides, infer_flags, decrease_axis, out, config); } /* Why not use SumRawInferMeta directly? Because we need make InferMetaFunction's args follow the design of ops.yaml */ void SumInferMeta(const MetaTensor& x, const IntArray& axis, DataType dtype, bool keep_dim, MetaTensor* out, MetaConfig config) { bool reduce_all = false; if (axis.size() == 0) { reduce_all = true; } SumRawInferMeta(x, axis, keep_dim, reduce_all, dtype, out, config); } void SumRawInferMeta(const MetaTensor& x, const IntArray& axis, bool keep_dim, bool reduce_all, DataType dtype, MetaTensor* out, MetaConfig config) { DDim out_dim; if (config.is_runtime || !axis.FromTensor()) { out_dim = ReduceInferDim(x, axis.GetData(), keep_dim, reduce_all); } else { out_dim = ReduceInferDimForIntArrayAxis(x, axis, keep_dim, reduce_all); } DataType out_dtype; if (dtype != DataType::UNDEFINED) { out_dtype = dtype; } else { if (x.dtype() == DataType::BOOL || x.dtype() == DataType::INT32) { out_dtype = DataType::INT64; } else { out_dtype = x.dtype(); } } out->set_dims(out_dim); out->set_dtype(out_dtype); out->set_layout(x.layout()); } void SvdInferMeta(const MetaTensor& x, bool full_matrices, MetaTensor* u, MetaTensor* s, MetaTensor* vh) { auto UDDim = [](const DDim& x_dim, int k) { // get x_dim and return the ddim of U auto x_vec = vectorize(x_dim); x_vec[x_vec.size() - 1] = k; return phi::make_ddim(x_vec); }; auto VHDDim = [](const DDim& x_dim, int k) { // get x_dim and return the ddim of U auto x_vec = vectorize(x_dim); x_vec[x_vec.size() - 2] = k; return phi::make_ddim(x_vec); }; auto SDDim = [](const DDim& x_dim, int k) { // get x_dim and return the ddim of U auto x_vec = vectorize(x_dim); x_vec[x_vec.size() - 2] = k; x_vec.erase(x_vec.end() - 1); // rank - 1 return phi::make_ddim(x_vec); }; auto in_dims = x.dims(); int x_rank = in_dims.size(); PADDLE_ENFORCE_GE( in_dims.size(), 2, phi::errors::InvalidArgument("the rank of input must greater than 2")); int m = in_dims[x_rank - 2]; int n = in_dims[x_rank - 1]; int k = std::min(m, n); u->set_dims(!full_matrices ? UDDim(in_dims, k) : UDDim(in_dims, m)); vh->set_dims(!full_matrices ? VHDDim(in_dims, k) : VHDDim(in_dims, n)); s->set_dims(SDDim(in_dims, k)); u->share_lod(x); vh->share_lod(x); s->share_lod(x); u->set_dtype(x.dtype()); vh->set_dtype(x.dtype()); s->set_dtype(x.dtype()); } void TemporalShiftInferMeta(const MetaTensor& x, int seg_num, float shift_ratio, const std::string& data_format, MetaTensor* out, MetaConfig config) { auto dim_x = x.dims(); PADDLE_ENFORCE_EQ(dim_x.size(), 4, phi::errors::InvalidArgument( "Input(X) rank should be 4 in shape of [N*T, C, H, " "W], but received X rank(%d)", dim_x.size())); PADDLE_ENFORCE_GT( seg_num, 0, phi::errors::InvalidArgument( "Attr(seg_num) should be greater than 0, but received %d", seg_num)); PADDLE_ENFORCE_GT( shift_ratio, 0., phi::errors::InvalidArgument( "Attr(shift_ratio) should be greater than 0, but received %d", shift_ratio)); PADDLE_ENFORCE_LT( shift_ratio, 0.5, phi::errors::InvalidArgument( "Attr(shift_ratio) should be less than 0.5, but received %d", shift_ratio)); if (config.is_runtime) { PADDLE_ENFORCE_EQ(dim_x[0] % seg_num, 0, phi::errors::InvalidArgument( "Input(X) dimension[0] should be divided exactly " "by Attr(seg_num), but received X dimension[0](%d) " "mod seg_num(%d) != 0", dim_x[0], seg_num)); } out->share_meta(x); } void TileInferMeta(const MetaTensor& x, const IntArray& repeat_times, MetaTensor* out, MetaConfig config) { #define MAX_RANK_SUPPORTED 6 auto repeat_times_data = repeat_times.GetData(); auto x_dims = x.dims(); if (repeat_times_data.size() == 0) { repeat_times_data = std::vector(x_dims.size(), -1); } PADDLE_ENFORCE_LE( x_dims.size(), MAX_RANK_SUPPORTED, errors::InvalidArgument( "The rank of the input 'x' for tile op " "must not be greater than %d, but the value received is %d.", MAX_RANK_SUPPORTED, x_dims.size())); PADDLE_ENFORCE_LE( repeat_times_data.size(), MAX_RANK_SUPPORTED, errors::InvalidArgument( "The size of the shape of input 'repeat_times' for tile op " "must not be greater than %d, but the value received is %d.", MAX_RANK_SUPPORTED, repeat_times_data.size())); PADDLE_ENFORCE_GE( repeat_times_data.size(), 0, errors::InvalidArgument( "The size of the shape of input 'repeat_times' for tile op " "must be positive integers, but the value received is %d.", repeat_times_data.size())); auto out_rank = std::max(static_cast(x_dims.size()), repeat_times_data.size()); std::vector out_shape(out_rank); auto x_dim_vec = phi::vectorize(x_dims); if (x_dim_vec.size() > repeat_times_data.size()) { auto diff = x_dim_vec.size() - repeat_times_data.size(); repeat_times_data.insert(repeat_times_data.begin(), diff, -1); } else { auto diff = repeat_times_data.size() - x_dim_vec.size(); x_dim_vec.insert(x_dim_vec.begin(), diff, -1); } for (size_t i = 0; i < repeat_times_data.size(); ++i) { if (x_dim_vec[i] == -1 || repeat_times_data[i] == -1) { out_shape[i] = -1; } else { PADDLE_ENFORCE_GT( repeat_times_data[i], 0, errors::InvalidArgument( "Every element of the input 'repeat_times' for tile op must be " "greater than 0, but the value given is %d.", repeat_times_data[i])); out_shape[i] = x_dim_vec[i] * repeat_times_data[i]; } } out->set_dims(phi::make_ddim(out_shape)); if (out_rank > 0 && (out_shape[0] == x_dims[0])) { out->share_lod(x); } out->set_dtype(x.dtype()); } void TopKInferMeta(const MetaTensor& x, const Scalar& k_scalar, int axis, bool largest, bool sorted, MetaTensor* out, MetaTensor* indices, MetaConfig config) { auto input_dims = x.dims(); const int& dim_size = input_dims.size(); if (dim_size != 0) { PADDLE_ENFORCE_EQ( (axis < dim_size) && (axis >= (-1 * dim_size)), true, phi::errors::InvalidArgument( "the axis of topk must be [-%d, %d), but you set axis is %d", dim_size, dim_size, axis)); } else { PADDLE_ENFORCE_EQ( (axis == dim_size) || (axis == -1), true, phi::errors::InvalidArgument("the axis of topk must be 0 or -1 when " "x.dims() = 0, but you set axis is %d", axis)); } if (axis < 0) axis += dim_size; int k = k_scalar.to(); if (k_scalar.FromTensor()) { k = -1; } else { PADDLE_ENFORCE_EQ(k >= 1, true, phi::errors::InvalidArgument( "the attribute of k in the topk must >= 1 or be a " "Tensor, but received %d .", k)); } PADDLE_ENFORCE_GE( input_dims.size(), 0, phi::errors::InvalidArgument("input of topk must have >= 0d shape")); phi::DDim dims = input_dims; if (input_dims.size() > 0) { dims[axis] = k; } out->set_dims(dims); out->share_lod(x); out->set_dtype(x.dtype()); indices->set_dims(dims); indices->share_lod(x); indices->set_dtype(DataType::INT64); } void TraceInferMeta( const MetaTensor& x, int offset, int axis1, int axis2, MetaTensor* out) { int dim1 = axis1; int dim2 = axis2; auto x_dims = x.dims(); int dim1_ = dim1 < 0 ? x_dims.size() + dim1 : dim1; int dim2_ = dim2 < 0 ? x_dims.size() + dim2 : dim2; PADDLE_ENFORCE_GE( x_dims.size(), 2, phi::errors::OutOfRange( "Input(x)'s dim is out of range (expected at least 2, but got %ld).", x_dims.size())); PADDLE_ENFORCE_LT( dim1_, x_dims.size(), phi::errors::OutOfRange( "axis1 is out of range (expected to be in range of [%ld, " "%ld], but got %ld).", -(x_dims.size()), (x_dims.size() - 1), dim1)); PADDLE_ENFORCE_GE( dim1_, 0, phi::errors::OutOfRange( "axis1 is out of range (expected to be in range of [%ld, " "%ld], but got %ld).", -(x_dims.size()), (x_dims.size() - 1), dim1)); PADDLE_ENFORCE_LT( dim2_, x_dims.size(), phi::errors::OutOfRange( "axis2 is out of range (expected to be in range of [%ld, " "%ld], but got %ld).", -(x_dims.size()), (x_dims.size() - 1), dim2)); PADDLE_ENFORCE_GE( dim2_, 0, phi::errors::OutOfRange( "axis2 is out of range (expected to be in range of [%ld, " "%ld], but got %ld).", -(x_dims.size()), (x_dims.size() - 1), dim2)); PADDLE_ENFORCE_NE( dim1_, dim2_, phi::errors::InvalidArgument("The dimensions should not be identical " "%ld vs %ld.", dim1, dim2)); auto sizes = vectorize(x_dims); if (x_dims.size() == 2) { sizes.clear(); sizes.push_back(1); } else { sizes.erase(sizes.begin() + std::max(dim1_, dim2_)); sizes.erase(sizes.begin() + std::min(dim1_, dim2_)); } out->set_dims(phi::make_ddim(sizes)); out->set_dtype(x.dtype()); } void TransferLayoutInferMeta(const MetaTensor& x, int src_layout, int dst_layout, MetaTensor* out) { out->set_dims(x.dims()); out->set_dtype(x.dtype()); out->set_layout(static_cast(dst_layout)); out->share_lod(x); } void TransposeInferMeta(const MetaTensor& x, const std::vector& axis, MetaTensor* out) { auto x_dims = x.dims(); int x_rank = x_dims.size(); int axis_size = axis.size(); // Note: x_rank > axis_size when fuse squeeze2 + transpose2, else x_rank == // axis_size PADDLE_ENFORCE_GE( x_rank, axis_size, errors::InvalidArgument("The input tensor's dimension " "should be equal to the axis's size. " "But received input tensor's dimension is %d, " "axis's size is %d", x_rank, axis_size)); std::vector formated_axis = axis; std::vector count(axis_size, 0); for (int i = 0; i < axis_size; i++) { PADDLE_ENFORCE_LT(axis[i], x_rank, errors::InvalidArgument( "The reduce dim index %d should be in the " "range [ -dimension(X), dimension(X) ) " "which dimesion = %d. But received dim index = %d.", i, x_rank, axis[i])); PADDLE_ENFORCE_GE(axis[i], -x_rank, errors::InvalidArgument( "The reduce dim index %d should be in the " "range [ -dimension(X), dimension(X) ) " "which dimesion = %d. But received dim index = %d.", i, x_rank, axis[i])); if (axis[i] < 0) { formated_axis[i] = axis[i] + x_rank; } PADDLE_ENFORCE_EQ( ++count[formated_axis[i]], 1, errors::InvalidArgument("Each element of axis should be unique. but " "axis[%d] is %d appear not only once", i, axis[i])); } phi::DDim out_dims(x_dims); for (int i = 0; i < axis_size; ++i) { out_dims[i] = x_dims[formated_axis[i]]; } out->set_dims(out_dims); out->set_dtype(x.dtype()); } void TransposeGradInferMeta(const MetaTensor& x, const std::vector& axis, MetaTensor* out) { size_t x_rank = x.dims().size(); std::vector formated_axis = axis; for (size_t i = 0; i < axis.size(); i++) { if (axis[i] < 0) { formated_axis[i] = axis[i] + x_rank; } } std::vector reversed_axis(axis); for (size_t i = 0; i < formated_axis.size(); i++) { reversed_axis[formated_axis[i]] = i; } TransposeInferMeta(x, reversed_axis, out); } void UnbindInferMeta(const MetaTensor& x, int axis, std::vector outs) { auto in_dims = x.dims(); std::vector out_dim; PADDLE_ENFORCE_GE( axis, -in_dims.size(), phi::errors::InvalidArgument( "axis must be in range(%d, %d).", -in_dims.size(), in_dims.size())); PADDLE_ENFORCE_LT( axis, in_dims.size(), phi::errors::InvalidArgument( "axis must be in range(%d, %d).", -in_dims.size(), in_dims.size())); axis = axis < 0 ? in_dims.size() + axis : axis; for (int i = 0; i < in_dims.size(); ++i) { if (i != axis) out_dim.push_back(in_dims[i]); } auto out_dims = phi::make_ddim(out_dim); for (size_t i = 0; i < outs.size(); ++i) { outs[i]->set_dtype(x.dtype()); outs[i]->set_dims(out_dims); outs[i]->set_layout(x.layout()); outs[i]->share_lod(x); } } void TrilTriuInferMeta(const MetaTensor& x, int diagonal, bool lower, MetaTensor* out) { const auto& x_dims = x.dims(); PADDLE_ENFORCE_GE(x_dims.size(), 2, phi::errors::InvalidArgument( "Input(X)'s rank must be at least 2 in TrilTriuOp.")); out->set_dims(x.dims()); out->share_lod(x); out->set_dtype(x.dtype()); } void TrilInferMeta(const MetaTensor& x, int diagonal, MetaTensor* out) { TrilTriuInferMeta(x, diagonal, true, out); } void TriuInferMeta(const MetaTensor& x, int diagonal, MetaTensor* out) { TrilTriuInferMeta(x, diagonal, false, out); } void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out) { out->share_meta(x); } // meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1] void UnchangedInferMetaCheckAxis(const MetaTensor& x, int axis, MetaTensor* out) { auto rank = x.dims().size(); if (rank > 0) { PADDLE_ENFORCE_GE(axis, -rank, phi::errors::InvalidArgument( "Attr(axis) value should be in range [-R, R-1], " "R is the rank of Input(X).")); PADDLE_ENFORCE_LT(axis, rank, phi::errors::InvalidArgument( "Attr(axis) value should be in range [-R, R-1], " "R is the rank of Input(X).")); } else if (rank == 0) { PADDLE_ENFORCE_GE( axis, -1, phi::errors::InvalidArgument("Attr(axis) value should be in range [-1, " "0] when input is 0D Tensor ")); PADDLE_ENFORCE_LE( axis, 0, phi::errors::InvalidArgument("Attr(axis) value should be in range [-1, " "0] when input is 0D Tensor ")); } out->share_meta(x); } void UnfoldInferMeta(const MetaTensor& x, const std::vector& kernel_sizes, const std::vector& strides, const std::vector& paddings, const std::vector& dilations, MetaTensor* out, MetaConfig config) { auto in_dims = x.dims(); // Only [N, C, H, W] input supported now PADDLE_ENFORCE_EQ( in_dims.size(), 4, phi::errors::InvalidArgument( "Input should be 4-D tensor of format [N, C, H, W], but get %u", in_dims.size())); PADDLE_ENFORCE_EQ( in_dims.size() - kernel_sizes.size(), 2U, phi::errors::InvalidArgument( "The dims of X should be larger than that of kernel_sizes " "by a number of 2, due to the batch size and input channel dim. " "But received dims(X:%u) - dims(kernel_sizes:%u) != 2", in_dims.size(), kernel_sizes.size())); PADDLE_ENFORCE_EQ( strides.size(), kernel_sizes.size(), phi::errors::InvalidArgument( "The dims of strides should be the same with that of kernel_sizes. " "But received dims(strides: %u) != dims(kernel_sizes: %u).", strides.size(), kernel_sizes.size())); PADDLE_ENFORCE_EQ( paddings.size(), 2 * strides.size(), phi::errors::InvalidArgument( "The dims of paddings should be 2 times of that of strides. " "But received dims(paddings: %u) != 2*dims(strides: %u).", paddings.size(), strides.size())); PADDLE_ENFORCE_EQ( strides.size(), dilations.size(), phi::errors::InvalidArgument( "The dims of strides should be the same with that of dilations. " "But received dims(strides: %u) != dims(dilations: %u).", strides.size(), dilations.size())); // check kernel_sizes PADDLE_ENFORCE_GT(kernel_sizes[0], 0, phi::errors::InvalidArgument( "The `kernel_sizes` should be greater than zero, " "but received kernel_height: %d kernel_width: %d.", kernel_sizes[0], kernel_sizes[1])); PADDLE_ENFORCE_GT(kernel_sizes[1], 0, phi::errors::InvalidArgument( "The `kernel_sizes` should be greater than zero, " "but received kernel_height: %d kernel_width: %d.", kernel_sizes[0], kernel_sizes[1])); // check strides PADDLE_ENFORCE_GT(strides[0], 0, phi::errors::InvalidArgument( "The `strides` should be greater than zero, " "but received strides_height: %d strides_width: %d.", strides[0], strides[1])); PADDLE_ENFORCE_GT(strides[1], 0, phi::errors::InvalidArgument( "The `strides` should be greater than zero, " "but received strides_height: %d strides_width: %d.", strides[0], strides[1])); // check dilations PADDLE_ENFORCE_GT( dilations[0], 0, phi::errors::InvalidArgument( "The `dilations` should be greater than zero, " "but received dilations_height: %d dilations_width: %d.", dilations[0], dilations[1])); PADDLE_ENFORCE_GT( dilations[1], 0, phi::errors::InvalidArgument( "The `dilations` should be greater than zero, " "but received dilations_height: %d dilations_width: %d.", dilations[0], dilations[1])); std::vector out_dims; out_dims.push_back(in_dims[0]); int output_channels = in_dims[1] * kernel_sizes[0] * kernel_sizes[1]; out_dims.push_back(output_channels); int output_height = phi::funcs::CalcOutputSize(in_dims[2], kernel_sizes[0], dilations[0], paddings[0], paddings[2], strides[0]); int output_width = phi::funcs::CalcOutputSize(in_dims[3], kernel_sizes[1], dilations[1], paddings[1], paddings[3], strides[1]); int output_col_length = output_height * output_width; if (config.is_runtime) { // only check output height and width in runtime PADDLE_ENFORCE_GT( output_height, 0, phi::errors::InvalidArgument( "The sliding blocks calculated from input spatial size " "(%d, %d), kernel_sizes (%d, %d), strides (%d, %d), " "dilations (%d, %d), is (%d, %d), which should be a " "positive integer.", in_dims[2], in_dims[3], kernel_sizes[0], kernel_sizes[1], strides[0], strides[1], dilations[0], dilations[1], output_height, output_width)); PADDLE_ENFORCE_GT( output_width, 0, phi::errors::InvalidArgument( "The sliding blocks calculated from input spatial size " "(%d, %d), kernel_sizes (%d, %d), strides (%d, %d), " "dilations (%d, %d), is (%d, %d), which should be a " "positive integer.", in_dims[2], in_dims[3], kernel_sizes[0], kernel_sizes[1], strides[0], strides[1], dilations[0], dilations[1], output_height, output_width)); } else { output_col_length = output_height == -1 || output_width == -1 ? -1 : output_col_length; } out_dims.push_back(output_col_length); out->set_dims(phi::make_ddim(out_dims)); } void UniformRandomInplaceInferMeta(const MetaTensor& x, float min, float max, int seed, int diag_num, int diag_step, float diag_val, MetaTensor* out) { PADDLE_ENFORCE_LT( min, max, errors::InvalidArgument( "The uniform_random's min must less then max. But received min = " "%f great than or equal max = %f.", min, max)); PADDLE_ENFORCE_GE(diag_num, 0, errors::InvalidArgument( "The uniform_random's diag_num must greater than or " "equal 0. But recevied diag_num (%d) < 0.", diag_num)); PADDLE_ENFORCE_GE(diag_step, 0, errors::InvalidArgument( "The uniform_random's diag_step must greater than or " "equal 0. But recevied diag_step (%d) < 0.", diag_step)); PADDLE_ENFORCE_NE(out, nullptr, phi::errors::InvalidArgument( "uniform_random should have output tensor out.")); auto xdim = x.dims(); out->set_dims(xdim); out->set_dtype(x.dtype()); } void UniqueConsecutiveInferMeta(const MetaTensor& x, bool return_inverse, bool return_counts, const std::vector& axis, int dtype, MetaTensor* out, MetaTensor* index, MetaTensor* counts) { PADDLE_ENFORCE_NE(out, nullptr, phi::errors::InvalidArgument( "unique_consecutive should have output tensor out.")); auto in_dims = x.dims(); if (x.dims().size() == 0) { PADDLE_ENFORCE_EQ(axis.empty(), true, phi::errors::InvalidArgument( "The Input(X) with 0-D Tensor, axis must be None" "But now the axis is %d.", axis[0])); } if (return_inverse) { PADDLE_ENFORCE_NE( index, nullptr, phi::errors::InvalidArgument("Tensor index should not be null if " "return_inverse is set to True.")); } if (return_counts) { PADDLE_ENFORCE_NE( counts, nullptr, phi::errors::InvalidArgument("Tensor counts should not be null if " "return_counts is set to True.")); } if (axis.empty()) { out->set_dims({-1}); out->set_dtype(x.dtype()); if (return_inverse) { index->set_dims({phi::product(in_dims)}); } } else { int axis_value = axis[0]; if (axis_value < 0) { axis_value += in_dims.size(); } PADDLE_ENFORCE_LT( axis_value, in_dims.size(), phi::errors::InvalidArgument("The axis(%d) should be less than " "the dimension size(%d) of x.", axis_value, in_dims.size())); auto out_dims = in_dims; out_dims[axis_value] = -1; out->set_dims(out_dims); out->set_dtype(x.dtype()); if (return_inverse) { index->set_dims({in_dims[axis_value]}); } } if (return_counts) { counts->set_dims({-1}); } } void UniqueInferMeta(const MetaTensor& x, bool return_index, bool return_inverse, bool return_counts, const std::vector& axis, DataType dtype, MetaTensor* out, MetaTensor* indices, MetaTensor* index, MetaTensor* counts) { bool is_sorted = true; UniqueRawInferMeta(x, return_index, return_inverse, return_counts, axis, dtype, is_sorted, out, indices, index, counts); } void UniqueRawInferMeta(const MetaTensor& x, bool return_index, bool return_inverse, bool return_counts, const std::vector& axis, DataType dtype, bool is_sorted, MetaTensor* out, MetaTensor* indices, MetaTensor* index, MetaTensor* counts) { if (!is_sorted) { PADDLE_ENFORCE_EQ(x.dims().size() == 1 || x.dims().size() == 0, true, phi::errors::InvalidArgument( "The Input(X) should be 0-D or 1-D Tensor, " "But now the dims of Input(X) is %d.", x.dims().size())); out->set_dims(phi::make_ddim({-1})); index->set_dims(x.dims()); return; } if (x.dims().size() == 0) { PADDLE_ENFORCE_EQ(axis.empty(), true, phi::errors::InvalidArgument( "The Input(X) with 0-D Tensor, axis must be None" "But now the axis is %d.", axis[0])); } if (axis.empty()) { out->set_dims(phi::make_ddim({-1})); if (return_inverse) { index->set_dims(phi::make_ddim({phi::product(x.dims())})); } } else { int axis_value = axis[0]; if (axis_value < 0) { axis_value += x.dims().size(); } PADDLE_ENFORCE_LT( axis_value, x.dims().size(), phi::errors::InvalidArgument("The axis(%d) should be less than " "the dimension size(%d) of x.", axis_value, x.dims().size())); PADDLE_ENFORCE_GE( axis_value, 0, phi::errors::InvalidArgument( "The axis(%d) + rank(x) (%d) should be greater than or equal to 0.", axis_value, -x.dims().size())); auto out_dims = x.dims(); out_dims[axis_value] = -1; out->set_dims(out_dims); if (return_inverse) { index->set_dims(phi::make_ddim({x.dims()[axis_value]})); index->set_dtype(dtype); } } if (return_index) { indices->set_dims(phi::make_ddim({-1})); indices->set_dtype(dtype); } if (return_counts) { counts->set_dims(phi::make_ddim({-1})); counts->set_dtype(dtype); } } void UnsqueezeInferMeta(const MetaTensor& x, const IntArray& axes, MetaTensor* out, MetaConfig config) { const auto& x_dims = x.dims(); // Validity Check: input tensor dims (<6). PADDLE_ENFORCE_LE(x_dims.size(), 6, phi::errors::InvalidArgument( "Invalid " "dimensions, the rank of Input(X) " "should be in the range of [1, 6] (Eigen limit)")); if (!config.is_runtime && axes.FromTensor()) { // compile time infershape. set all elements to -1. int output_size = x.dims().size() + axes.GetData().size(); std::vector vec_out_dims(output_size, -1); out->set_dtype(x.dtype()); out->set_dims(phi::make_ddim(vec_out_dims)); } else { auto out_dims = funcs::GetUnsqueezeShape(axes.GetData(), x_dims); out->set_dims(out_dims); if (x_dims.size() > 0 && x_dims[0] == out_dims[0]) { out->share_lod(x); } out->set_dtype(x.dtype()); } } void UnsqueezeWithXShapeInferMeta(const MetaTensor& x, const IntArray& axes, MetaTensor* out, MetaTensor* xshape, MetaConfig config) { const auto& x_dims = x.dims(); UnsqueezeInferMeta(x, axes, out, config); // set xshape dims. std::vector xshape_dims(x_dims.size() + 1); xshape_dims[0] = 0; for (int i = 0; i < x_dims.size(); ++i) { xshape_dims[i + 1] = x_dims[i]; } if (xshape) { xshape->set_dims(phi::make_ddim(xshape_dims)); xshape->share_lod(x); xshape->set_dtype(x.dtype()); } } void UnStackInferMeta(const MetaTensor& x, int axis, int num, std::vector outs) { auto x_dim = x.dims(); int rank = x_dim.size(); PADDLE_ENFORCE_GE(axis, -rank, phi::errors::InvalidArgument( "The attribute axis is out of range, it must be " "inside [-rank, rank), where rank = %d", rank)); PADDLE_ENFORCE_LT(axis, rank, phi::errors::InvalidArgument( "The attribute axis is out of range, it must be " "inside [-rank, rank), where rank = %d", rank)); if (axis < 0) axis += rank; size_t output_count = outs.size(); PADDLE_ENFORCE_EQ(output_count, static_cast(num), phi::errors::InvalidArgument( "Number of Outputs(Y) is wrong. Got %d , but it must " "equal to attribute num which is %d.", output_count, static_cast(num))); if (x_dim[axis] > 0) { PADDLE_ENFORCE_EQ( num, x_dim[axis], phi::errors::InvalidArgument( "The number of attribute num is not equal to the length of the " "%d axis of Input(X). Expect %d but got %d.", axis, x_dim[axis], num)); } auto vec = phi::vectorize(x_dim); vec.erase(vec.begin() + axis); for (size_t i = 0; i < output_count; i++) { outs[i]->set_dims(phi::make_ddim(vec)); outs[i]->set_dtype(x.dtype()); } } void ChannelShuffleInferMeta(const MetaTensor& x, int groups, const std::string& data_format, MetaTensor* out) { auto input_dims = x.dims(); PADDLE_ENFORCE_EQ(input_dims.size(), 4, phi::errors::InvalidArgument( "Input should be a 4-D tensor of format [N, C, H, W] " "or [N, H, W, C], but got %u.", input_dims.size())); PADDLE_ENFORCE_GE( groups, 1, phi::errors::InvalidArgument("groups should be larger than 0.")); PADDLE_ENFORCE_EQ(data_format == "NCHW" || data_format == "NHWC", true, phi::errors::InvalidArgument( "data_format must be one of " "NCHW and NHWC. But recevied data_format: %s", data_format)); const bool channel_last = (data_format == "NHWC"); if (!channel_last) { PADDLE_ENFORCE_EQ(input_dims[1] % groups, 0, phi::errors::InvalidArgument( "The number of groups to divide channels in [%u] " "should divide the number of channel [%u]", groups, input_dims[1])); } else { PADDLE_ENFORCE_EQ(input_dims[3] % groups, 0, phi::errors::InvalidArgument( "The number of groups to divide channels in [%u] " "should divide the number of channel [%u]", groups, input_dims[3])); } auto output_dims = input_dims; out->set_dtype(x.dtype()); out->set_dims(output_dims); } } // namespace phi PD_REGISTER_INFER_META_FN(flatten, phi::FlattenInferMeta);