/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" #include "paddle/fluid/inference/tensorrt/engine.h" #include "paddle/phi/common/data_type.h" #if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000) #include "paddle/fluid/inference/tensorrt/plugin/spmm_plugin.h" #endif #include "paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.h" #include "paddle/fluid/inference/tensorrt/plugin/group_norm_op_plugin.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/phi/common/float16.h" using float16 = phi::dtype::float16; namespace paddle { namespace inference { namespace tensorrt { class TensorRTDynamicShapeValueEngineTest : public ::testing::Test { protected: void SetUp() override { ctx_ = new phi::GPUContext(platform::CUDAPlace(0)); ctx_->SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(platform::CUDAPlace(0), ctx_->stream()) .get()); ctx_->SetHostAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(paddle::platform::CPUPlace()) .get()); ctx_->SetZeroAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetZeroAllocator(platform::CUDAPlace(0)) .get()); ctx_->SetPinnedAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(paddle::platform::CUDAPinnedPlace()) .get()); ctx_->PartialInitWithAllocator(); std::map> min_input_shape = { {"input", {1, 32}}}; std::map> max_input_shape = { {"input", {18, 32}}}; std::map> optim_input_shape = { {"input", {18, 32}}}; std::map> min_input_value = { {"shape", {1, 8, 4}}}; std::map> max_input_value = { {"shape", {18, 8, 4}}}; std::map> optim_input_value = { {"shape", {18, 8, 4}}}; engine_ = new TensorRTEngine(16, 1 << 10, AnalysisConfig::Precision::kFloat32, nullptr, 0, true, min_input_shape, max_input_shape, optim_input_shape, min_input_value, max_input_value, optim_input_value, false, phi::DataType::FLOAT32, NaiveLogger::Global()); engine_->InitNetwork(); } void TearDown() override { if (engine_) { delete engine_; engine_ = nullptr; } } void PrepareInputOutput(const std::vector &input, std::vector output_shape) { paddle::framework::TensorFromVector(input, *ctx_, &input_); output_.Resize(phi::make_ddim(output_shape)); } void PrepareShapeInput(const std::vector &input) { paddle::framework::TensorFromVector(input, *ctx_, &shape_); } void GetOutput(std::vector *output) { paddle::framework::TensorToVector(output_, *ctx_, output); } protected: phi::DenseTensor input_; phi::DenseTensor shape_; phi::DenseTensor output_; TensorRTEngine *engine_; phi::GPUContext *ctx_; }; TEST_F(TensorRTDynamicShapeValueEngineTest, test_trt_dynamic_shape_value) { std::vector buffers(3); std::cout << "with_dynamic_shape: " << engine_->with_dynamic_shape() << std::endl; auto *x = engine_->DeclareInput( "input", nvinfer1::DataType::kFLOAT, nvinfer1::Dims2{-1, 32}); nvinfer1::Dims shape_dim; shape_dim.nbDims = 1; shape_dim.d[0] = 3; auto *shape = engine_->DeclareInput("shape", nvinfer1::DataType::kINT32, shape_dim); auto layer = engine_->network()->addShuffle(*x); layer->setInput(1, *shape); PADDLE_ENFORCE_NOT_NULL( layer, platform::errors::InvalidArgument("TRT shuffle layer building failed.")); engine_->DeclareOutput(layer, 0, "y"); engine_->FreezeNetwork(); ASSERT_EQ(engine_->engine()->getNbBindings(), 3); std::vector x_v(8 * 32); for (int i = 0; i < 8 * 32; i++) { x_v[i] = i % (8 * 32); } std::vector shape_v = {8, 8, 4}; PrepareInputOutput(x_v, {8, 8, 4}); PrepareShapeInput(shape_v); engine_->context()->setBindingDimensions(0, nvinfer1::Dims2{8, 32}); engine_->context()->setBindingDimensions(1, shape_dim); engine_->context()->setInputShapeBinding(1, shape_v.data()); auto *x_gpu_data = input_.mutable_data(ctx_->GetPlace()); auto *shape_gpu_data = shape_.mutable_data(ctx_->GetPlace()); auto *y_gpu_data = output_.mutable_data(ctx_->GetPlace()); buffers[0] = reinterpret_cast(x_gpu_data); buffers[1] = reinterpret_cast(shape_gpu_data); buffers[2] = reinterpret_cast(y_gpu_data); engine_->Execute(-1, &buffers, ctx_->stream()); cudaStreamSynchronize(ctx_->stream()); std::vector y_cpu; GetOutput(&y_cpu); ASSERT_EQ(y_cpu[0], 0); ASSERT_EQ(y_cpu[1], 1); auto dims = engine_->context()->getBindingDimensions(2); ASSERT_EQ(dims.nbDims, 3); ASSERT_EQ(dims.d[0], 8); ASSERT_EQ(dims.d[1], 8); ASSERT_EQ(dims.d[2], 4); return; } class TensorRTDynamicEngineTest : public ::testing::Test { protected: void SetUp() override { ctx_ = new phi::GPUContext(platform::CUDAPlace(0)); ctx_->SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(platform::CUDAPlace(0), ctx_->stream()) .get()); ctx_->SetHostAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(paddle::platform::CPUPlace()) .get()); ctx_->SetZeroAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetZeroAllocator(platform::CUDAPlace(0)) .get()); ctx_->SetPinnedAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(paddle::platform::CUDAPinnedPlace()) .get()); ctx_->PartialInitWithAllocator(); std::map> min_input_shape = { {"input", {16, 32, 1, 1}}}; std::map> max_input_shape = { {"input", {16, 32, 1, 1}}}; std::map> optim_input_shape = { {"input", {16, 32, 1, 1}}}; engine_ = new TensorRTEngine(16, 1 << 10, AnalysisConfig::Precision::kHalf, nullptr, 0, true, min_input_shape, max_input_shape, optim_input_shape, std::map>(), std::map>(), std::map>(), false, phi::DataType::FLOAT32, NaiveLogger::Global()); engine_->InitNetwork(); } void TearDown() override { if (engine_) { delete engine_; engine_ = nullptr; } } void PrepareInputOutput(const std::vector &input, std::vector output_shape) { paddle::framework::TensorFromVector(input, *ctx_, &input_); output_.Resize(phi::make_ddim(output_shape)); } void GetOutput(std::vector *output) { paddle::framework::TensorToVector(output_, *ctx_, output); } protected: phi::DenseTensor input_; phi::DenseTensor output_; TensorRTEngine *engine_; phi::GPUContext *ctx_; }; TEST_F(TensorRTDynamicEngineTest, test_spmm) { // Weight in CPU memory. #if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000) float16 raw_weight[512]; for (int i = 0; i < 128; i++) { if (i % 16 <= 7) { raw_weight[4 * i] = float16(1.0); raw_weight[4 * i + 1] = float16(0.0); raw_weight[4 * i + 2] = float16(0.0); raw_weight[4 * i + 3] = float16(4.0); } else { raw_weight[4 * i] = float16(0.0); raw_weight[4 * i + 1] = float16(2.0); raw_weight[4 * i + 2] = float16(3.0); raw_weight[4 * i + 3] = float16(0.0); } } float16 raw_bias[16] = {float16(0), float16(1), float16(0), float16(2), float16(0), float16(3), float16(0), float16(4), float16(0), float16(5), float16(0), float16(6), float16(0), float16(7), float16(0), float16(8)}; std::vector buffers(2); // TRT binded inputs TensorRTEngine::Weight weight(nvinfer1::DataType::kHALF, raw_weight, 512); TensorRTEngine::Weight bias(nvinfer1::DataType::kHALF, raw_bias, 16); std::cout << "with_dynamic_shape: " << engine_->with_dynamic_shape() << std::endl; auto *x = engine_->DeclareInput( "input", nvinfer1::DataType::kHALF, nvinfer1::Dims4{-1, 32, 1, 1}); plugin::SpmmPluginDynamic::Activation act = plugin::SpmmPluginDynamic::Activation::kNone; plugin::SpmmPluginDynamic *plugin = new plugin::SpmmPluginDynamic("CustomSpmmPluginDynamic", nvinfer1::DataType::kHALF, 16, weight.get(), bias.get(), act); std::vector plugin_inputs; plugin_inputs.emplace_back(x); auto fc_layer = engine_->network()->addPluginV2( plugin_inputs.data(), plugin_inputs.size(), *plugin); LOG(INFO) << "create weights"; PADDLE_ENFORCE_NOT_NULL( fc_layer, platform::errors::InvalidArgument("TRT SPMM layer building failed.")); engine_->DeclareOutput(fc_layer, 0, "y"); engine_->FreezeNetwork(); ASSERT_EQ(engine_->engine()->getNbBindings(), 2); std::vector x_v(512); for (int i = 0; i < 128; i++) { x_v[4 * i] = float16(1.0); x_v[4 * i + 1] = float16(2.0); x_v[4 * i + 2] = float16(3.0); x_v[4 * i + 3] = float16(4.0); } std::vector y_cpu; PrepareInputOutput(x_v, {16, 16}); auto *x_v_gpu_data = input_.mutable_data(ctx_->GetPlace()); auto *y_gpu_data = output_.mutable_data(ctx_->GetPlace()); buffers[0] = reinterpret_cast(x_v_gpu_data); buffers[1] = reinterpret_cast(y_gpu_data); engine_->Execute(16, &buffers, ctx_->stream()); LOG(INFO) << "to get output"; GetOutput(&y_cpu); auto dims = engine_->GetITensor("y")->getDimensions(); ASSERT_EQ(dims.nbDims, 4); ASSERT_EQ(dims.d[1], 16); ASSERT_EQ(y_cpu[0], 136); ASSERT_EQ(y_cpu[1], 105); ASSERT_EQ(y_cpu[32], 136); ASSERT_EQ(y_cpu[64], 136); ASSERT_EQ(y_cpu[96], 136); #endif return; } class TensorRTDynamicTestFusedTokenPrune : public ::testing::Test { protected: void SetUp() override { ctx_ = new phi::GPUContext(platform::CUDAPlace(0)); ctx_->SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(platform::CUDAPlace(0), ctx_->stream()) .get()); ctx_->SetHostAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(paddle::platform::CPUPlace()) .get()); ctx_->SetZeroAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetZeroAllocator(platform::CUDAPlace(0)) .get()); ctx_->SetPinnedAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(paddle::platform::CUDAPinnedPlace()) .get()); ctx_->PartialInitWithAllocator(); std::map> min_input_shape = { {"attn", {4, 4}}, {"x", {4, 4, 1}}, {"mask", {4, 1, 4, 4}}, {"new_mask", {4, 1, 2, 2}}}; std::map> max_input_shape = { {"attn", {4, 4}}, {"x", {4, 4, 1}}, {"mask", {4, 1, 4, 4}}, {"new_mask", {4, 1, 2, 2}}}; std::map> optim_input_shape = { {"attn", {4, 4}}, {"x", {4, 4, 1}}, {"mask", {4, 1, 4, 4}}, {"new_mask", {4, 1, 2, 2}}}; engine_ = new TensorRTEngine(16, 1 << 10, AnalysisConfig::Precision::kFloat32, nullptr, 0, true, min_input_shape, max_input_shape, optim_input_shape, std::map>(), std::map>(), std::map>(), false, phi::DataType::FLOAT32, NaiveLogger::Global()); engine_->InitNetwork(); } void TearDown() override { if (engine_) { delete engine_; engine_ = nullptr; } } void PrepareInputOutput(const std::vector> inputs, std::vector> output_shapes) { LOG(INFO) << "PrepareInputOutput"; int num_inputs = inputs.size(); int num_outputs = output_shapes.size(); inputs_.resize(num_inputs); outputs_.resize(num_outputs); for (int i = 0; i < num_inputs; ++i) { paddle::framework::TensorFromVector(inputs[i], *ctx_, &inputs_[i]); } for (int i = 0; i < num_outputs; ++i) { outputs_[i].Resize(phi::make_ddim(output_shapes[i])); } } void GetOutput(std::vector &slimmed_x, // NOLINT std::vector &cls_inds) { // NOLINT paddle::framework::TensorToVector(outputs_[0], *ctx_, &slimmed_x); paddle::framework::TensorToVector(outputs_[1], *ctx_, &cls_inds); } protected: std::vector inputs_; std::vector outputs_; TensorRTEngine *engine_; phi::GPUContext *ctx_; }; TEST_F(TensorRTDynamicTestFusedTokenPrune, test_fused_token_prune) { #if IS_TRT_VERSION_GE(8000) tensorrt::plugin::TrtPluginRegistry::Global()->RegistToTrt(); auto *attn = engine_->DeclareInput( "attn", nvinfer1::DataType::kFLOAT, nvinfer1::Dims2{-1, 4}); auto *x = engine_->DeclareInput( "x", nvinfer1::DataType::kFLOAT, nvinfer1::Dims3{-1, 4, 1}); auto *mask = engine_->DeclareInput( "mask", nvinfer1::DataType::kFLOAT, nvinfer1::Dims4{-1, 1, 4, 4}); auto *new_mask = engine_->DeclareInput( "new_mask", nvinfer1::DataType::kFLOAT, nvinfer1::Dims4{-1, 1, 2, 2}); plugin::FusedTokenPrunePluginDynamic *plugin = new plugin::FusedTokenPrunePluginDynamic(/*with_fp16*/ false, /*keep_first_token*/ false, /*keep_order*/ true, /*flag_varseqlen*/ false); std::vector itensors = {attn, x, mask, new_mask}; auto *layer = engine_->AddDynamicPlugin(itensors.data(), 4, plugin); PADDLE_ENFORCE_NOT_NULL(layer, platform::errors::InvalidArgument( "TRT fused_token_prune layer building failed.")); std::vector output_tensor_names{"out_slimmed_x", "out_cls_inds"}; for (size_t i = 0; i < 2; i++) { layer->getOutput(i)->setName(output_tensor_names[i].c_str()); engine_->DeclareOutput(layer, i, output_tensor_names[i]); } engine_->FreezeNetwork(); ASSERT_EQ(engine_->engine()->getNbBindings(), 6); LOG(INFO) << "create input"; std::vector attn_v(16); for (int j = 0; j < 4; ++j) { for (int k = 0; k < 4; ++k) { attn_v[j * 4 + k] = k; } } std::vector x_v(16); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { x_v[i * 4 + j] = 4 - j; } } std::vector mask_v(64); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { for (int k = 0; k < 4; ++k) { mask_v[i * 16 + j * 4 + k] = 1; } } } std::vector new_mask_v(16); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 2; ++j) { for (int k = 0; k < 2; ++k) { new_mask_v[i * 4 + j * 2 + k] = 1; } } } LOG(INFO) << "create output"; std::vector out_slimmed_x_shape{4, 2, 1}; std::vector out_cls_ins_shape{4, 2}; PrepareInputOutput({attn_v, x_v, mask_v, new_mask_v}, {out_slimmed_x_shape, out_cls_ins_shape}); auto *attn_gpu_data = inputs_[0].mutable_data(ctx_->GetPlace()); auto *x_gpu_data = inputs_[1].mutable_data(ctx_->GetPlace()); auto *mask_gpu_data = inputs_[2].mutable_data(ctx_->GetPlace()); auto *new_mask_gpu_data = inputs_[3].mutable_data(ctx_->GetPlace()); auto *slimmed_x_gpu_data = outputs_[0].mutable_data(ctx_->GetPlace()); auto *cls_inds_gpu_data = outputs_[1].mutable_data(ctx_->GetPlace()); LOG(INFO) << "create buffers"; std::vector buffers(6); buffers[0] = reinterpret_cast(attn_gpu_data); buffers[1] = reinterpret_cast(x_gpu_data); buffers[2] = reinterpret_cast(mask_gpu_data); buffers[3] = reinterpret_cast(new_mask_gpu_data); buffers[4] = reinterpret_cast(slimmed_x_gpu_data); buffers[5] = reinterpret_cast(cls_inds_gpu_data); LOG(INFO) << "Execute"; engine_->Execute(4, &buffers, ctx_->stream()); std::vector slimmed_x_v(8); std::vector cls_inds_v; LOG(INFO) << "GetOutput"; GetOutput(slimmed_x_v, cls_inds_v); // slimmed_x_v: [[4,3,2,1],[4,3,2,1],[4,3,2,1],[4,3,2,1]] -> // [[2,1],[2,1],[2,1],[2,1]] ASSERT_EQ(slimmed_x_v[0], 2); ASSERT_EQ(slimmed_x_v[1], 1); ASSERT_EQ(slimmed_x_v[2], 2); ASSERT_EQ(slimmed_x_v[3], 1); ASSERT_EQ(slimmed_x_v[4], 2); ASSERT_EQ(slimmed_x_v[5], 1); ASSERT_EQ(slimmed_x_v[6], 2); ASSERT_EQ(slimmed_x_v[7], 1); ASSERT_EQ(cls_inds_v[0], 2); ASSERT_EQ(cls_inds_v[1], 3); ASSERT_EQ(cls_inds_v[2], 2); ASSERT_EQ(cls_inds_v[3], 3); ASSERT_EQ(cls_inds_v[4], 2); ASSERT_EQ(cls_inds_v[5], 3); ASSERT_EQ(cls_inds_v[6], 2); ASSERT_EQ(cls_inds_v[7], 3); LOG(INFO) << "finish"; #endif } class TensorRTDynamicTestFusedTokenPruneHalf : public ::testing::Test { protected: void SetUp() override { ctx_ = new phi::GPUContext(platform::CUDAPlace(0)); ctx_->SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(platform::CUDAPlace(0), ctx_->stream()) .get()); ctx_->SetHostAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(paddle::platform::CPUPlace()) .get()); ctx_->SetZeroAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetZeroAllocator(platform::CUDAPlace(0)) .get()); ctx_->SetPinnedAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(paddle::platform::CUDAPinnedPlace()) .get()); ctx_->PartialInitWithAllocator(); std::map> min_input_shape = { {"attn", {4, 4}}, {"x", {4, 4, 1}}, {"mask", {4, 1, 4, 4}}, {"new_mask", {4, 1, 2, 2}}}; std::map> max_input_shape = { {"attn", {4, 4}}, {"x", {4, 4, 1}}, {"mask", {4, 1, 4, 4}}, {"new_mask", {4, 1, 2, 2}}}; std::map> optim_input_shape = { {"attn", {4, 4}}, {"x", {4, 4, 1}}, {"mask", {4, 1, 4, 4}}, {"new_mask", {4, 1, 2, 2}}}; engine_ = new TensorRTEngine(16, 1 << 10, AnalysisConfig::Precision::kHalf, nullptr, 0, true, min_input_shape, max_input_shape, optim_input_shape, std::map>(), std::map>(), std::map>(), false, phi::DataType::FLOAT32, NaiveLogger::Global()); engine_->InitNetwork(); } void TearDown() override { if (engine_) { delete engine_; engine_ = nullptr; } } void PrepareInputOutput(const std::vector> inputs, std::vector> output_shapes) { LOG(INFO) << "PrepareInputOutput"; int num_inputs = inputs.size(); int num_outputs = output_shapes.size(); inputs_.resize(num_inputs); outputs_.resize(num_outputs); for (int i = 0; i < num_inputs; ++i) { paddle::framework::TensorFromVector(inputs[i], *ctx_, &inputs_[i]); } for (int i = 0; i < num_outputs; ++i) { outputs_[i].Resize(phi::make_ddim(output_shapes[i])); } } void GetOutput(std::vector &slimmed_x, // NOLINT std::vector &cls_inds) { // NOLINT paddle::framework::TensorToVector(outputs_[0], *ctx_, &slimmed_x); paddle::framework::TensorToVector(outputs_[1], *ctx_, &cls_inds); } protected: std::vector inputs_; std::vector outputs_; TensorRTEngine *engine_; phi::GPUContext *ctx_; }; TEST_F(TensorRTDynamicTestFusedTokenPruneHalf, test_fused_token_prune) { #if IS_TRT_VERSION_GE(8000) tensorrt::plugin::TrtPluginRegistry::Global()->RegistToTrt(); auto *attn = engine_->DeclareInput( "attn", nvinfer1::DataType::kHALF, nvinfer1::Dims2{-1, 4}); auto *x = engine_->DeclareInput( "x", nvinfer1::DataType::kHALF, nvinfer1::Dims3{-1, 4, 1}); auto *mask = engine_->DeclareInput( "mask", nvinfer1::DataType::kHALF, nvinfer1::Dims4{-1, 1, 4, 4}); auto *new_mask = engine_->DeclareInput( "new_mask", nvinfer1::DataType::kHALF, nvinfer1::Dims4{-1, 1, 2, 2}); plugin::FusedTokenPrunePluginDynamic *plugin = new plugin::FusedTokenPrunePluginDynamic(/*with_fp16*/ true, /*keep_first_token*/ false, /*keep_order*/ true, /*flag_varseqlen*/ false); std::vector itensors = {attn, x, mask, new_mask}; auto *layer = engine_->AddDynamicPlugin(itensors.data(), 4, plugin); PADDLE_ENFORCE_NOT_NULL(layer, platform::errors::InvalidArgument( "TRT fused_token_prune layer building failed.")); std::vector output_tensor_names{"out_slimmed_x", "out_cls_inds"}; for (size_t i = 0; i < 2; i++) { layer->getOutput(i)->setName(output_tensor_names[i].c_str()); engine_->DeclareOutput(layer, i, output_tensor_names[i]); } engine_->FreezeNetwork(); ASSERT_EQ(engine_->engine()->getNbBindings(), 6); LOG(INFO) << "create input"; std::vector attn_v(16); for (int j = 0; j < 4; ++j) { for (int k = 0; k < 4; ++k) { attn_v[j * 4 + k] = k; } } std::vector x_v(16); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { x_v[i * 4 + j] = 4 - j; } } std::vector mask_v(64); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { for (int k = 0; k < 4; ++k) { mask_v[i * 16 + j * 4 + k] = 1; } } } std::vector new_mask_v(16); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 2; ++j) { for (int k = 0; k < 2; ++k) { new_mask_v[i * 4 + j * 2 + k] = 1; } } } LOG(INFO) << "create output"; std::vector out_slimmed_x_shape{4, 2, 1}; std::vector out_cls_ins_shape{4, 2}; PrepareInputOutput({attn_v, x_v, mask_v, new_mask_v}, {out_slimmed_x_shape, out_cls_ins_shape}); auto *attn_gpu_data = inputs_[0].mutable_data(ctx_->GetPlace()); auto *x_gpu_data = inputs_[1].mutable_data(ctx_->GetPlace()); auto *mask_gpu_data = inputs_[2].mutable_data(ctx_->GetPlace()); auto *new_mask_gpu_data = inputs_[3].mutable_data(ctx_->GetPlace()); auto *slimmed_x_gpu_data = outputs_[0].mutable_data(ctx_->GetPlace()); auto *cls_inds_gpu_data = outputs_[1].mutable_data(ctx_->GetPlace()); LOG(INFO) << "create buffers"; std::vector buffers(6); buffers[0] = reinterpret_cast(attn_gpu_data); buffers[1] = reinterpret_cast(x_gpu_data); buffers[2] = reinterpret_cast(mask_gpu_data); buffers[3] = reinterpret_cast(new_mask_gpu_data); buffers[4] = reinterpret_cast(slimmed_x_gpu_data); buffers[5] = reinterpret_cast(cls_inds_gpu_data); LOG(INFO) << "Execute"; engine_->Execute(4, &buffers, ctx_->stream()); std::vector slimmed_x_v(8); std::vector cls_inds_v; LOG(INFO) << "GetOutput"; GetOutput(slimmed_x_v, cls_inds_v); // slimmed_x_v: [[4,3,2,1],[4,3,2,1],[4,3,2,1],[4,3,2,1]] -> // [[2,1],[2,1],[2,1],[2,1]] ASSERT_EQ(slimmed_x_v[0], 2); ASSERT_EQ(slimmed_x_v[1], 1); ASSERT_EQ(slimmed_x_v[2], 2); ASSERT_EQ(slimmed_x_v[3], 1); ASSERT_EQ(slimmed_x_v[4], 2); ASSERT_EQ(slimmed_x_v[5], 1); ASSERT_EQ(slimmed_x_v[6], 2); ASSERT_EQ(slimmed_x_v[7], 1); ASSERT_EQ(cls_inds_v[0], 2); ASSERT_EQ(cls_inds_v[1], 3); ASSERT_EQ(cls_inds_v[2], 2); ASSERT_EQ(cls_inds_v[3], 3); ASSERT_EQ(cls_inds_v[4], 2); ASSERT_EQ(cls_inds_v[5], 3); ASSERT_EQ(cls_inds_v[6], 2); ASSERT_EQ(cls_inds_v[7], 3); LOG(INFO) << "finish"; #endif } #if IS_TRT_VERSION_GE(8000) class TensorRTDynamicShapeGNTest : public ::testing::Test { protected: void SetUp() override { ctx_ = new phi::GPUContext(platform::CUDAPlace(0)); ctx_->SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(platform::CUDAPlace(0), ctx_->stream()) .get()); ctx_->SetHostAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(paddle::platform::CPUPlace()) .get()); ctx_->SetZeroAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetZeroAllocator(platform::CUDAPlace(0)) .get()); ctx_->SetPinnedAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(paddle::platform::CUDAPinnedPlace()) .get()); ctx_->PartialInitWithAllocator(); std::map> min_input_shape = { {"x", {n_, c_, h_, w_}}}; std::map> max_input_shape = { {"x", {n_, c_, h_, w_}}}; std::map> optim_input_shape = { {"x", {n_, c_, h_, w_}}}; std::map> min_input_value = {}; std::map> max_input_value = {}; std::map> optim_input_value = {}; engine_ = new TensorRTEngine(16, 1 << 10, AnalysisConfig::Precision::kInt8, nullptr, 0, true, min_input_shape, max_input_shape, optim_input_shape, min_input_value, max_input_value, optim_input_value, false, phi::DataType::FLOAT32, NaiveLogger::Global()); engine_->InitNetwork(); } void TearDown() override { if (engine_) { delete engine_; engine_ = nullptr; } } void PrepareInputOutput(const std::vector &input, std::vector output_shape) { paddle::framework::TensorFromVector(input, *ctx_, &x_); paddle::framework::TensorFromVector(input, *ctx_, &y_); } void GetOutput(std::vector *output) { paddle::framework::TensorToVector(y_, *ctx_, output); } struct logical_struct { int n; int c; int h; int w; }; int nchw(struct logical_struct shape, struct logical_struct index) { return index.n * shape.c * shape.h * shape.w + index.c * shape.h * shape.w + index.h * shape.w + index.w; } // this function void naive_qdq_cpu( float *output, const float *input, int n, float q, float dq) { for (int i = 0; i < n; i++) { float tmp = input[i]; int32_t qtmp = std::round(tmp / q); qtmp = std::max(-128, qtmp); qtmp = std::min(127, qtmp); output[i] = qtmp * dq; } } void naive_groupnorm_post_qdq(float *output, const float *input, int n, int c, int h, int w, int groups, float epsilon, float post_scale, const float *scale, const float *bias, bool with_silu) { assert(c % groups == 0); struct logical_struct shape { n, c, h, w }; for (int ni = 0; ni < n; ni++) { for (int group_i = 0; group_i < groups; group_i++) { int ci_begin = group_i * (c / groups); int ci_end = (group_i + 1) * (c / groups); float sum = 0.f; float q2sum = 0.f; for (int ci = ci_begin; ci < ci_end; ci++) { for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { struct logical_struct index { ni, ci, hi, wi }; float tmp_data = *(input + nchw(shape, index)); sum += tmp_data; q2sum += tmp_data * tmp_data; } } } int nums = h * w * c / groups; float mean = sum / nums; float sigma = sqrtf(q2sum / nums - mean * mean + epsilon); for (int ci = ci_begin; ci < ci_end; ci++) { for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { struct logical_struct index { ni, ci, hi, wi }; float tmp_data = *(input + nchw(shape, index)); float norm_data = (tmp_data - mean) / sigma; *(output + nchw(shape, index)) = norm_data; } } } } } for (int ni = 0; ni < n; ni++) { for (int ci = 0; ci < c; ci++) { for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { struct logical_struct index { ni, ci, hi, wi }; float tmp = *(output + nchw(shape, index)); float scale_v = scale[ci]; float bias_v = bias[ci]; float x = tmp * scale_v + bias_v; if (with_silu) { x = x / (1 + std::exp(-x)); } *(output + nchw(shape, index)) = x; } } } } naive_qdq_cpu(output, output, n * c * h * w, post_scale, post_scale); } protected: phi::DenseTensor x_; phi::DenseTensor y_; TensorRTEngine *engine_; phi::GPUContext *ctx_; // case from SD int n_ = 2; int c_ = 320; int h_ = 14; int w_ = 14; int groups_ = 32; float epsilon_ = 0.000009999999747378752; }; TEST_F(TensorRTDynamicShapeGNTest, test_trt_dynamic_shape_groupnorm) { tensorrt::plugin::TrtPluginRegistry::Global()->RegistToTrt(); float *bias = new float[c_]; float *scale = new float[c_]; for (int i = 0; i < c_; i++) { bias[i] = (i % 100) / 100.f; } for (int i = 0; i < c_; i++) { scale[i] = (i % 100) / 100.f; } auto *x = engine_->DeclareInput( "x", nvinfer1::DataType::kFLOAT, nvinfer1::Dims4{n_, c_, h_, w_}); nvinfer1::Dims scale_dims; scale_dims.nbDims = 1; scale_dims.d[0] = 1; // must set qscale_data = 1.f! float qscale_data = 1.f; float dqscale_data = 1.f; TensorRTEngine::Weight q_weight(nvinfer1::DataType::kFLOAT, &qscale_data, 1); TensorRTEngine::Weight dq_weight( nvinfer1::DataType::kFLOAT, &dqscale_data, 1); auto *qscale_tensor = TRT_ENGINE_ADD_LAYER(engine_, Constant, scale_dims, q_weight.get()) ->getOutput(0); auto *dqscale_tensor = TRT_ENGINE_ADD_LAYER(engine_, Constant, scale_dims, dq_weight.get()) ->getOutput(0); auto *q_layer = TRT_ENGINE_ADD_LAYER(engine_, Quantize, *x, *qscale_tensor); q_layer->setAxis(1); auto *q_layer_tensor = q_layer->getOutput(0); int gn_num = n_ * groups_; std::vector mean_shape({gn_num}); std::vector variance_shape({gn_num}); bool with_fp16 = true; bool with_int8 = true; bool with_silu = true; plugin::GroupNormPluginDynamic *plugin = new plugin::GroupNormPluginDynamic(scale, c_, bias, c_, epsilon_, groups_, mean_shape, variance_shape, with_silu, with_fp16, with_int8); nvinfer1::ILayer *groupnorm_layer = engine_->AddDynamicPlugin(&q_layer_tensor, 1, plugin); groupnorm_layer->setOutputType(0, nvinfer1::DataType::kINT8); auto *gn_tensor = groupnorm_layer->getOutput(0); auto *dq_layer = TRT_ENGINE_ADD_LAYER(engine_, Dequantize, *gn_tensor, *dqscale_tensor); dq_layer->setAxis(1); PADDLE_ENFORCE_NOT_NULL(groupnorm_layer, platform::errors::InvalidArgument( "TRT GN plugin layer building failed.")); engine_->DeclareOutput(dq_layer, 0, "y"); engine_->FreezeNetwork(); int input_num = n_ * c_ * h_ * w_; std::vector shape_v = {n_, c_, h_, w_}; std::vector x_v(input_num); for (int i = 0; i < input_num; i++) { x_v[i] = i % 32 - 16; } PrepareInputOutput(x_v, shape_v); engine_->context()->setBindingDimensions(0, nvinfer1::Dims4{n_, c_, h_, w_}); auto *x_gpu_data = x_.data(); auto *y_gpu_data = y_.mutable_data(ctx_->GetPlace()); std::vector buffers(2); buffers[0] = reinterpret_cast(x_gpu_data); buffers[1] = reinterpret_cast(y_gpu_data); engine_->Execute(-1, &buffers, ctx_->stream()); cudaStreamSynchronize(ctx_->stream()); std::vector y_cpu; GetOutput(&y_cpu); std::vector y_base(input_num); naive_groupnorm_post_qdq(y_base.data(), x_v.data(), n_, c_, h_, w_, groups_, epsilon_, dqscale_data, bias, scale, with_silu); float max_diff = -1; int right_num = 0; for (uint64_t i = 0; i < y_cpu.size(); i++) { float diff = std::abs(y_base[i] - y_cpu[i]); if (diff < 6e-2) right_num++; if (diff > max_diff) max_diff = diff; } ASSERT_EQ(right_num, input_num); delete[] bias; delete[] scale; return; } #endif } // namespace tensorrt } // namespace inference } // namespace paddle