import numpy import collections import topology import minibatch __all__ = ['infer', 'Inference'] class Inference(object): """ Inference combines neural network output and parameters together to do inference. .. code-block:: python inferer = Inference(output_layer=prediction, parameters=parameters) for data_batch in batches: print inferer.infer(data_batch) :param output_layer: The neural network that should be inferenced. :type output_layer: paddle.v2.config_base.Layer or the sequence of paddle.v2.config_base.Layer :param parameters: The parameters dictionary. :type parameters: paddle.v2.parameters.Parameters """ def __init__(self, output_layer, parameters): import py_paddle.swig_paddle as api topo = topology.Topology(output_layer) gm = api.GradientMachine.createFromConfigProto( topo.proto(), api.CREATE_MODE_TESTING, [api.PARAMETER_VALUE]) for param in gm.getParameters(): val = param.getBuf(api.PARAMETER_VALUE) name = param.getName() assert isinstance(val, api.Vector) val.copyFromNumpyArray(parameters.get(name).flatten()) self.__gradient_machine__ = gm self.__data_types__ = topo.data_type() def iter_infer(self, input, feeding=None): from data_feeder import DataFeeder feeder = DataFeeder(self.__data_types__, feeding) batch_size = len(input) def __reader_impl__(): for each_sample in input: yield each_sample reader = minibatch.batch(__reader_impl__, batch_size=batch_size) self.__gradient_machine__.start() for data_batch in reader(): yield self.__gradient_machine__.forwardTest(feeder(data_batch)) self.__gradient_machine__.finish() def iter_infer_field(self, field, **kwargs): if not isinstance(field, list) and not isinstance(field, tuple): field = [field] for result in self.iter_infer(**kwargs): for each_result in result: item = [each_result[each_field] for each_field in field] yield item def infer(self, input, field='value', **kwargs): """ Infer a data by model. :param input: input data batch. Should be python iterable object. :param field: output field. """ retv = None kwargs['input'] = input for result in self.iter_infer_field(field=field, **kwargs): if retv is None: retv = [[] for i in xrange(len(result))] for i, item in enumerate(result): retv[i].append(item) retv = [numpy.concatenate(out) for out in retv] if len(retv) == 1: return retv[0] else: return retv def infer(output_layer, parameters, input, feeding=None, field='value'): """ Infer a neural network by given neural network output and parameters. The user should pass either a batch of input data or reader method. Example usage for sinlge output_layer: .. code-block:: python result = paddle.infer(output_layer=prediction, parameters=parameters, input=SomeData) print result Example usage for multiple outout_layers and fields: .. code-block:: python result = paddle.infer(output_layer=[prediction1, prediction2], parameters=parameters, input=SomeData, field=[id, value]]) print result :param output_layer: output of the neural network that would be inferred :type output_layer: paddle.v2.config_base.Layer or a list of paddle.v2.config_base.Layer :param parameters: parameters of the neural network. :type parameters: paddle.v2.parameters.Parameters :param input: input data batch. Should be a python iterable object, and each element is the data batch. :type input: collections.Iterable :param feeding: Reader dictionary. Default could generate from input value. :param field: The prediction field. It should in [`value`, `id`, `prob`]. `value` and `prob` mean return the prediction probabilities, `id` means return the prediction labels. Default is `value`. Note that `prob` only used when output_layer is beam_search or max_id. :type field: str :return: The prediction result. If there are multiple outout_layers and fields, the return order is outout_layer1.field1, outout_layer2.field1, ..., outout_layer1.field2, outout_layer2.field2 ... :rtype: numpy.ndarray """ inferer = Inference(output_layer=output_layer, parameters=parameters) return inferer.infer(field=field, input=input, feeding=feeding)