// Copyright (c) 2022 CINN Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/cinn/hlir/op/contrib/sort.h" #include #include #include #include #include #include "paddle/cinn/common/cas.h" #include "paddle/cinn/common/common.h" #include "paddle/cinn/common/context.h" #include "paddle/cinn/common/macros.h" #include "paddle/cinn/hlir/framework/node.h" #include "paddle/cinn/hlir/framework/op.h" #include "paddle/cinn/hlir/framework/op_strategy.h" #include "paddle/cinn/hlir/op/op_util.h" #include "paddle/cinn/hlir/pe/elementwise.h" #include "paddle/cinn/hlir/pe/ir_schedule_pe.h" #include "paddle/cinn/hlir/pe/transform.h" #include "paddle/cinn/ir/ir.h" #include "paddle/cinn/ir/ir_base.h" #include "paddle/cinn/ir/tensor.h" #include "paddle/cinn/lang/builtin.h" #include "paddle/cinn/lang/compute.h" DECLARE_bool(cinn_ir_schedule); namespace cinn { namespace hlir { namespace op { using common::CINNValue; using common::CINNValuePack; std::vector ArgSort(const ir::Tensor &A, const common::Target &target, poly::StageMap stages, const int &axis, const bool &is_ascend, const std::string &name) { std::string find_func_name; std::string index_func_name; if (target.arch == common::Target::Arch::NVGPU) { find_func_name.assign("cinn_nvgpu_next_smallest_int32"); } else if (target.arch == common::Target::Arch::X86) { find_func_name.assign("cinn_host_next_smallest_int32"); } else { LOG(FATAL) << "ArgSort only supports X86 and NVGPU ! Please Check.\n"; } if (is_ascend) { index_func_name = cinn::hlir::GetExternFuncName(target, A->type(), "lt_num"); } else { index_func_name = cinn::hlir::GetExternFuncName(target, A->type(), "gt_num"); } int pos_axis = axis; if (pos_axis < 0) { pos_axis += A->shape.size(); } auto positions = Compute( A->shape, [=](const std::vector &indices) { Expr offset(0); Expr stride(1); for (int i = 0; i < indices.size(); i++) { if (i < pos_axis) { offset = offset * A->shape[i] + indices[i]; } else if (i == pos_axis) { offset = offset * A->shape[i]; } else { offset = offset * A->shape[i] + indices[i]; stride = stride * A->shape[i]; } } offset = common::AutoSimplify(offset); stride = common::AutoSimplify(stride); auto A_shape_axis = A->shape[pos_axis]; return lang::CallExtern(index_func_name, {A, A_shape_axis, A(indices), offset, stride}); }, name + "_temp"); auto res = Compute( A->shape, [=](const std::vector &indices) { Expr offset(0); Expr stride(1); for (int i = 0; i < indices.size(); i++) { if (i < pos_axis) { offset = offset * A->shape[i] + indices[i]; } else if (i == pos_axis) { offset = offset * A->shape[i]; } else { offset = offset * A->shape[i] + indices[i]; stride = stride * A->shape[i]; } } offset = common::AutoSimplify(offset); stride = common::AutoSimplify(stride); auto A_shape_axis = A->shape[pos_axis]; auto idx = lang::CallExtern(find_func_name, {positions, A_shape_axis, indices[pos_axis], offset, stride}); return idx; }, name); stages->InsertLazily(positions); return {res, positions}; } std::vector Sort(const ir::Tensor &A, const common::Target &target, poly::StageMap stages, const int &axis, const bool &is_ascend, const std::string &name) { int pos_axis = axis; if (pos_axis < 0) { pos_axis += A->shape.size(); } auto sort_index = ArgSort(A, target, stages, pos_axis, is_ascend, name + "_index"); auto res = Compute( A->shape, [=](const std::vector &indices) { std::vector A_indices(indices); A_indices[pos_axis] = sort_index.at(0)(indices); return A(A_indices); }, name); stages->InsertLazily(sort_index.at(0)); return {res, sort_index.at(0), sort_index.at(1)}; } std::shared_ptr StrategyForSort(const framework::NodeAttr &attrs, const std::vector &inputs, const std::vector &out_type, const std::vector> &output_shapes, const Target &target) { auto attr_store = attrs.attr_store; std::string op_name("sort"); CHECK(attr_store.count("axis")) << "find no attr of axis"; int axis = absl::get(attr_store.at("axis")); bool is_ascend = true; if (attr_store.count("is_ascend")) { is_ascend = absl::get(attr_store.at("is_ascend")); } framework::CINNCompute sort_compute([=](lang::Args args, lang::RetValue *ret) { CHECK(!args.empty()) << "The input arguments of Sort compute is empty! Please check.\n"; CINNValuePack pack_args = args[0]; CHECK_GE(pack_args.size(), 1U) << "At least 1 input tensors for Sort compute\n"; Expr A = pack_args[0]; CHECK(A.as_tensor()); CHECK(!output_shapes.empty()); auto tensor_A = A.as_tensor_ref(); auto stages = CreateStages({tensor_A}); VLOG(3) << "A shape: " << utils::Join(tensor_A->shape, ", ") << ", output_shapes: " << utils::Join(output_shapes[0], ", "); auto tensor_name = UniqName("Sort_out"); if (FLAGS_cinn_ir_schedule) { CHECK_EQ(pack_args.size(), 2U); CHECK(pack_args[1].is_string()); tensor_name = pack_args[1].operator std::string(); } std::vector out = Sort(tensor_A, target, stages, axis, is_ascend, tensor_name); stages->InsertLazily(out[0]); std::vector res{CINNValue(out[0]), CINNValue(out[1]), CINNValue(out[2])}; CHECK(!out_type.empty()) << "Output type of Sort is empty! Please check.\n"; res.push_back(CINNValue(stages)); *ret = CINNValuePack{res}; }); framework::CINNSchedule sort_schedule([=](lang::Args args, lang::RetValue *ret) { if (FLAGS_cinn_ir_schedule) { CHECK(!args.empty()) << "The input argument of sort_schedule is empty! Please check.\n"; common::CINNValuePack arg_pack = args[0]; std::vector vec_ast; for (int i = 0; i < arg_pack.size(); i++) { if (arg_pack[i].is_expr()) { Expr temp = arg_pack[i]; vec_ast.emplace_back(temp); } } CHECK(!vec_ast.empty()); ir::ModuleExpr mod_expr(vec_ast); ir::IRSchedule ir_sch(mod_expr); ir_sch.MergeExprs(); auto blocks = ir_sch.GetAllBlocks(); // TODO: remove external calls, do not use local variables, because // the size will exceed the limit. ir_sch.SetBuffer(blocks[0], "local"); ir_sch.SetBuffer(blocks[1], "local"); long prod_size = std::accumulate(output_shapes[0].begin(), output_shapes[0].end(), 1, std::multiplies()); if (prod_size > 1 && target.arch == Target::Arch::X86) { pe::IRScheduleInjectiveCPU(ir_sch, output_shapes.front(), target, true); } std::vector res{common::CINNValue(ir_sch.GetModule().GetExprs().at(0))}; *ret = common::CINNValuePack{res}; } else { CHECK(!args.empty()) << "The input argument of sort_schedule is empty! Please check.\n"; CINNValuePack arg_pack = args[0]; Expr out = arg_pack[0]; CHECK(out.as_tensor()); *ret = arg_pack; } }); auto strategy = std::make_shared(); strategy->AddImpl(sort_compute, sort_schedule, "strategy.sort", 1); return strategy; } std::shared_ptr StrategyForArgSort(const framework::NodeAttr &attrs, const std::vector &inputs, const std::vector &out_type, const std::vector> &output_shapes, const Target &target) { auto attr_store = attrs.attr_store; CHECK(attr_store.count("axis")) << "find no attr of axis"; int axis = absl::get(attr_store.at("axis")); bool is_ascend = true; if (attr_store.count("is_ascend")) { is_ascend = absl::get(attr_store.at("is_ascend")); } framework::CINNCompute argsort_compute([=](lang::Args args, lang::RetValue *ret) { CHECK(!args.empty()) << "The input arguments of ArgSort compute is empty! Please check.\n"; CINNValuePack pack_args = args[0]; CHECK_GE(pack_args.size(), 1U) << "At least 1 input tensors for ArgSort compute\n"; Expr A = pack_args[0]; CHECK(A.as_tensor()); CHECK(!output_shapes.empty()); auto tensor_A = A.as_tensor_ref(); auto stages = CreateStages({tensor_A}); VLOG(3) << "A shape: " << utils::Join(tensor_A->shape, ", ") << ", output_shapes: " << utils::Join(output_shapes[0], ", "); auto tensor_name = UniqName("ArgSort_out"); if (FLAGS_cinn_ir_schedule) { CHECK_EQ(pack_args.size(), 3U); CHECK(pack_args[1].is_string()); tensor_name = pack_args[1].operator std::string(); } auto out = ArgSort(tensor_A, target, stages, axis, is_ascend, tensor_name); std::vector res; stages->InsertLazily(out.at(0)); stages->InsertLazily(out.at(1)); res.push_back(CINNValue(out.at(0))); res.push_back(CINNValue(out.at(1))); CHECK(!out_type.empty()) << "Output type of ArgSort is empty! Please check.\n"; res.push_back(CINNValue(stages)); *ret = CINNValuePack{res}; }); framework::CINNSchedule argsort_schedule([=](lang::Args args, lang::RetValue *ret) { if (FLAGS_cinn_ir_schedule) { CHECK(!args.empty()) << "The input argument of argsort_schedule is empty! Please check.\n"; common::CINNValuePack arg_pack = args[0]; std::vector vec_ast; for (int i = 0; i < arg_pack.size(); i++) { if (arg_pack[i].is_expr()) { Expr temp = arg_pack[i]; vec_ast.emplace_back(temp); } } CHECK(!vec_ast.empty()); ir::ModuleExpr mod_expr(vec_ast); ir::IRSchedule ir_sch(mod_expr); ir_sch.MergeExprs(); auto blocks = ir_sch.GetAllBlocks(); // TODO: remove external calls, do not use local variables, because // the size will exceed the limit. // TODO: There is a bug, setting buffer to "local" here will cause the var declared twice at CodeGen. // ir_sch.SetBuffer(blocks[0], "local"); long prod_size = std::accumulate(output_shapes[0].begin(), output_shapes[0].end(), 1, std::multiplies()); if (prod_size > 1 && target.arch == Target::Arch::X86) { pe::IRScheduleInjectiveCPU(ir_sch, output_shapes.front(), target, true); } std::vector res{common::CINNValue(ir_sch.GetModule().GetExprs().at(0))}; *ret = common::CINNValuePack{res}; } else { CHECK(!args.empty()) << "The input argument of argsort_schedule is empty! Please check.\n"; CINNValuePack arg_pack = args[0]; Expr out = arg_pack[0]; CHECK(out.as_tensor()); *ret = arg_pack; } }); auto strategy = std::make_shared(); strategy->AddImpl(argsort_compute, argsort_schedule, "strategy.argsort", 1); return strategy; } std::vector> InferShapeForSort(const std::vector> &inputs_shape, const framework::AttrMapType &attrs) { CHECK_EQ(inputs_shape.size(), 1UL) << "The input's shape size should be 1! Please check again."; int axis = 0; for (auto &iter : attrs) { if (iter.first == "axis") { axis = absl::get(iter.second); break; } } CHECK_GT(inputs_shape[0].size(), axis) << "The input's dim should be greater than axis! "; std::vector> res{inputs_shape[0]}; return res; } std::vector InferDtypeForSort(const std::vector &inputs_type, const framework::AttrMapType &attrs) { CHECK_EQ(inputs_type.size(), 1UL) << "The input's type size should be 1! Please check again."; std::vector res{inputs_type[0]}; return res; } std::vector> InferShapeForArgSort(const std::vector> &inputs_shape, const framework::AttrMapType &attrs) { CHECK_EQ(inputs_shape.size(), 1UL) << "The input's shape size should be 1! Please check again."; int axis = 0; for (auto &iter : attrs) { if (iter.first == "axis") { axis = absl::get(iter.second); break; } } if (axis < 0) { axis += inputs_shape[0].size(); } CHECK_GT(inputs_shape[0].size(), axis) << "The input's dim should be greater than axis! "; std::vector> res{inputs_shape[0], inputs_shape[0]}; return res; } std::vector InferDtypeForArgSort(const std::vector &inputs_type, const framework::AttrMapType &attrs) { CHECK_EQ(inputs_type.size(), 1UL) << "The input's type size should be 1! Please check again."; return {Int(32), Int(32)}; } std::vector> InferShapeForTopK(const std::vector> &inputs_shape, const framework::AttrMapType &attrs) { CHECK_EQ(inputs_shape.size(), 1UL) << "The input's shape size should be 1! Please check again."; auto res = inputs_shape; auto k_it = attrs.find("k"); CHECK(k_it != attrs.end()) << "The attr k of topk does not exist."; int k = absl::get(k_it->second); auto axis_it = attrs.find("axis"); CHECK(axis_it != attrs.end()) << "The attr axis of topk does not exist."; int axis = absl::get(axis_it->second); if (axis < 0) { axis += res[0].size(); } CHECK_GE(axis, 0); CHECK_LT(axis, res[0].size()); res[0][axis] = std::min(res[0][axis], k); return {res[0], res[0]}; } std::vector InferDtypeForTopK(const std::vector &inputs_type, const framework::AttrMapType &attrs) { CHECK_EQ(inputs_type.size(), 1UL) << "The input's type size should be 1! Please check again."; std::vector res{inputs_type[0], Int(64)}; return res; } } // namespace op } // namespace hlir } // namespace cinn CINN_REGISTER_HELPER(sort_ops) { CINN_REGISTER_OP(sort) .describe("Sort a variable x along the given axis and return sorted Variable.") .set_num_inputs(1) .set_num_outputs(1) .set_attr("CINNStrategy", cinn::hlir::op::StrategyForSort) .set_attr("infershape", MakeOpFunction(cinn::hlir::op::InferShapeForSort)) .set_attr("inferdtype", MakeOpFunction(cinn::hlir::op::InferDtypeForSort)) .set_attr("OpPattern", cinn::hlir::framework::OpPatternKind::kNonFusible) .set_support_level(4); CINN_REGISTER_OP(argsort) .describe("Sort a variable x along the given axis and return indices.") .set_num_inputs(1) .set_num_outputs(2) .set_attr("CINNStrategy", cinn::hlir::op::StrategyForArgSort) .set_attr("infershape", MakeOpFunction(cinn::hlir::op::InferShapeForArgSort)) .set_attr("inferdtype", MakeOpFunction(cinn::hlir::op::InferDtypeForArgSort)) .set_attr("OpPattern", cinn::hlir::framework::OpPatternKind::kNonFusible) .set_support_level(4); CINN_REGISTER_OP(top_k) .describe("Find values and indices of the k largest entries for the last dimension..") .set_num_inputs(1) .set_num_outputs(2) .set_attr("infershape", MakeOpFunction(cinn::hlir::op::InferShapeForTopK)) .set_attr("inferdtype", MakeOpFunction(cinn::hlir::op::InferDtypeForTopK)) .set_attr("OpPattern", cinn::hlir::framework::OpPatternKind::kNonFusible) .set_support_level(4); return true; }