# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F import math import paddle.distributed.fleet as fleet from paddle.distributed.ps.utils.public import logger class DNNLayer(nn.Layer): def __init__(self, sparse_feature_number, sparse_feature_dim, dense_feature_dim, num_field, layer_sizes, sync_mode=None): super(DNNLayer, self).__init__() self.sync_mode = sync_mode self.sparse_feature_number = sparse_feature_number self.sparse_feature_dim = sparse_feature_dim self.dense_feature_dim = dense_feature_dim self.num_field = num_field self.layer_sizes = layer_sizes self.embedding = paddle.nn.Embedding( self.sparse_feature_number, self.sparse_feature_dim, sparse=True, weight_attr=paddle.ParamAttr( name="SparseFeatFactors", initializer=paddle.nn.initializer.Uniform())) sizes = [sparse_feature_dim * num_field + dense_feature_dim ] + self.layer_sizes + [2] acts = ["relu" for _ in range(len(self.layer_sizes))] + [None] self._mlp_layers = [] for i in range(len(layer_sizes) + 1): linear = paddle.nn.Linear( in_features=sizes[i], out_features=sizes[i + 1], weight_attr=paddle.ParamAttr( initializer=paddle.nn.initializer.Normal( std=1.0 / math.sqrt(sizes[i])))) self.add_sublayer('linear_%d' % i, linear) self._mlp_layers.append(linear) if acts[i] == 'relu': act = paddle.nn.ReLU() self.add_sublayer('act_%d' % i, act) self._mlp_layers.append(act) def forward(self, sparse_inputs, dense_inputs): sparse_embs = [] for s_input in sparse_inputs: if self.sync_mode == "gpubox": emb = paddle.fluid.contrib.sparse_embedding( input=s_input, size=[self.sparse_feature_number, self.sparse_feature_dim], param_attr=paddle.ParamAttr(name="embedding")) else: emb = self.embedding(s_input) emb = paddle.reshape(emb, shape=[-1, self.sparse_feature_dim]) sparse_embs.append(emb) y_dnn = paddle.concat(x=sparse_embs + [dense_inputs], axis=1) if self.sync_mode == 'heter': with paddle.fluid.device_guard('gpu'): for n_layer in self._mlp_layers: y_dnn = n_layer(y_dnn) else: for n_layer in self._mlp_layers: y_dnn = n_layer(y_dnn) return y_dnn class StaticModel(): def __init__(self, config): self.cost = None self.infer_target_var = None self.config = config self._init_hyper_parameters() self.sync_mode = config.get("runner.sync_mode") def _init_hyper_parameters(self): self.is_distributed = False self.distributed_embedding = False if self.config.get("hyper_parameters.distributed_embedding", 0) == 1: self.distributed_embedding = True self.sparse_feature_number = self.config.get( "hyper_parameters.sparse_feature_number") self.sparse_feature_dim = self.config.get( "hyper_parameters.sparse_feature_dim") self.sparse_inputs_slots = self.config.get( "hyper_parameters.sparse_inputs_slots") self.dense_input_dim = self.config.get( "hyper_parameters.dense_input_dim") self.learning_rate = self.config.get( "hyper_parameters.optimizer.learning_rate") self.fc_sizes = self.config.get("hyper_parameters.fc_sizes") def create_feeds(self, is_infer=False): dense_input = paddle.static.data( name="dense_input", shape=[None, self.dense_input_dim], dtype="float32") sparse_input_ids = [ paddle.static.data( name="C" + str(i), shape=[None, 1], dtype="int64") for i in range(1, self.sparse_inputs_slots) ] label = paddle.static.data(name="label", shape=[None, 1], dtype="int64") feeds_list = [label] + sparse_input_ids + [dense_input] return feeds_list def net(self, input, is_infer=False): self.label_input = input[0] self.sparse_inputs = input[1:self.sparse_inputs_slots] self.dense_input = input[-1] sparse_number = self.sparse_inputs_slots - 1 dnn_model = DNNLayer( self.sparse_feature_number, self.sparse_feature_dim, self.dense_input_dim, sparse_number, self.fc_sizes, sync_mode=self.sync_mode) raw_predict_2d = dnn_model.forward(self.sparse_inputs, self.dense_input) predict_2d = paddle.nn.functional.softmax(raw_predict_2d) self.predict = predict_2d auc, batch_auc, [ self.batch_stat_pos, self.batch_stat_neg, self.stat_pos, self.stat_neg ] = paddle.static.auc(input=self.predict, label=self.label_input, num_thresholds=2**12, slide_steps=20) self.inference_target_var = auc if is_infer: fetch_dict = {'auc': auc} return fetch_dict cost = paddle.nn.functional.cross_entropy( input=raw_predict_2d, label=self.label_input) avg_cost = paddle.mean(x=cost) self._cost = avg_cost fetch_dict = {'cost': avg_cost, 'auc': auc} return fetch_dict