// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include "paddle/fluid/eager/eager_tensor.h" #include "paddle/fluid/framework/data_transform.h" #include "paddle/fluid/framework/op_kernel_type.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/pten_utils.h" #include "paddle/fluid/framework/type_defs.h" #include "paddle/fluid/imperative/execution_context.h" #include "paddle/fluid/imperative/layer.h" #include "paddle/fluid/imperative/type_defs.h" #include "paddle/fluid/imperative/var_helper.h" #include "paddle/pten/core/dense_tensor.h" #include "paddle/pten/core/selected_rows.h" DECLARE_bool(use_mkldnn); namespace paddle { namespace imperative { const framework::Tensor* GetTensorFromVar(const framework::Variable& var); template static void SetForwardDataTypeOfGradVar(const std::shared_ptr& var); template <> void SetForwardDataTypeOfGradVar( const std::shared_ptr& var) { if (var->HasGradVar()) { auto grad_var = var->GetGradVar(); VLOG(6) << "Set grad var (" << grad_var->Name() << ")'s forward dtype to (" << framework::DataTypeToString(var->DataType()) << ")."; grad_var->SetForwardDataType(var->DataType()); } } template <> void SetForwardDataTypeOfGradVar(const std::shared_ptr& var) { if (var->HasGradVar()) { auto& shared_var = var->SharedVar(); SetForwardDataTypeOfGradVar(shared_var); } } template <> void SetForwardDataTypeOfGradVar( const std::shared_ptr& var) { VLOG(10) << "Var in Eager dose not support SetForwardDataTypeOfGradVar: " << var->name(); // TODO(jiabin): SetForwardDataType of Grad var is not supported yet in // EagerMode. } template std::shared_ptr> PrepareData( const framework::OperatorWithKernel& op, const NameVarMap& ins, const framework::OpKernelType& expected_kernel_key) { std::shared_ptr> tmp_ins_ptr = nullptr; for (const auto& name_pair : ins) { for (size_t i = 0; i < name_pair.second.size(); ++i) { auto& template_var = name_pair.second[i]; SetForwardDataTypeOfGradVar(template_var); const auto* tensor = GetTensorFromVar(template_var->Var()); if (tensor && tensor->IsInitialized()) { auto kernel_type_for_var = op.GetKernelTypeForVar( name_pair.first, *tensor, expected_kernel_key); if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) { continue; } else { VLOG(3) << "Transform Variable " << GetNameFromVar(template_var) << " from " << kernel_type_for_var << " to " << expected_kernel_key; if (CheckCachedKey(template_var, expected_kernel_key)) { VLOG(3) << "Hit variable_wrapper cache: key=" << expected_kernel_key; std::shared_ptr cache_var = GetCachedValue(template_var, expected_kernel_key); if (tmp_ins_ptr == nullptr) { tmp_ins_ptr = std::make_shared>(ins); } const auto* tensor = GetTensorFromVar(cache_var->Var()); auto tmp_var = std::make_shared(GetNameFromVar(template_var)); SetType(tmp_var, GetType(template_var)); SetTensorToVariable(cache_var->Var(), *tensor, tmp_var->MutableVar()); (*tmp_ins_ptr)[name_pair.first][i] = tmp_var; } else { framework::Tensor out; TransformData(expected_kernel_key, kernel_type_for_var, *tensor, &out); if (NeedTransformDataType(kernel_type_for_var, expected_kernel_key)) { // To avoid NameVarMap copy construction overhead in general // scenarios, if inplace transformed, return original input // directly if (tmp_ins_ptr == nullptr) { tmp_ins_ptr = std::make_shared>(ins); } auto tmp_var = std::make_shared(GetNameFromVar(template_var)); SetType(tmp_var, GetType(template_var)); SetTensorToVariable(template_var->Var(), out, tmp_var->MutableVar()); (*tmp_ins_ptr)[name_pair.first][i] = tmp_var; SetCachedValue(template_var, expected_kernel_key, tmp_var); VLOG(3) << "Set cache to variable_wrapper: key=" << expected_kernel_key; } else { // if dtype is same, transform inplace will not change the // original // value, transform inplace to avoid multiple copy SetTensorToVariable(template_var->Var(), out, template_var->MutableVar()); } } } } } } return tmp_ins_ptr; } class PreparedOp { public: PreparedOp(const framework::OperatorBase& op, const framework::RuntimeContext& ctx, const framework::OpKernelType& kernel_type, const framework::OperatorWithKernel::OpKernelFunc& func, platform::DeviceContext* dev_ctx); PreparedOp(const framework::OperatorBase& op, const framework::RuntimeContext& ctx, const framework::OpKernelType& kernel_type, const framework::KernelSignature& kernel_signature, const pten::Kernel& pt_kernel, platform::DeviceContext* dev_ctx); static PreparedOp Prepare(const NameVarMap& ins, const NameVarMap& outs, const framework::OperatorWithKernel& op, const platform::Place& place, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs); static PreparedOp Prepare(const NameVarMap& ins, const NameVarMap& outs, const framework::OperatorWithKernel& op, const platform::Place& place, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs); static PreparedOp Prepare(const NameVarMap& ins, const NameVarMap& outs, const framework::OperatorWithKernel& op, const platform::Place& place, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs); void Run(const NameVarMap& in, const NameVarMap& out, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs); void Run(const NameVarMap& ins, const NameVarMap& outs, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs); void Run(const NameVarMap& ins, const NameVarMap& outs, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs); const framework::OpKernelType& kernel_type() const { return kernel_type_; } private: const framework::OperatorBase& op_; const framework::RuntimeContext& ctx_; framework::OpKernelType kernel_type_; framework::OperatorWithKernel::OpKernelFunc func_; platform::DeviceContext* dev_ctx_; // NOTE(chenweihang): Similar op members are used to adapt to // new pten kernel, if there is a better design in the future, // we may polish the implementation here bool run_pten_kernel_{false}; bool run_kp_kernel_{false}; framework::KernelSignature pt_kernel_signature_; pten::Kernel pt_kernel_; }; const inline framework::Attribute& GetAttr( const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs, const std::string& name) { auto it = attrs.find(name); bool found = it != attrs.end(); if (!found) { it = default_attrs.find(name); found = it != default_attrs.end(); } PADDLE_ENFORCE_EQ( found, true, platform::errors::NotFound("(%s) is not found in AttributeMap.", name)); return it->second; } template void BuildDygraphPtenKernelContext( const framework::KernelSignature& pt_kernel_signature, const pten::Kernel& pt_kernel, const NameVarMap& ins, const NameVarMap& outs, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs, platform::DeviceContext* dev_ctx, pten::KernelContext* kernel_ctx) { kernel_ctx->SetDeviceContext(dev_ctx); auto& input_names = std::get<0>(pt_kernel_signature.args); auto& attr_names = std::get<1>(pt_kernel_signature.args); auto& output_names = std::get<2>(pt_kernel_signature.args); auto& input_defs = pt_kernel.args_def().input_defs(); auto& output_defs = pt_kernel.args_def().output_defs(); auto& attr_defs = pt_kernel.args_def().attribute_defs(); PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(), platform::errors::InvalidArgument( "the size of inputs_args names (%d) must be equal to " "the size of kernel input_defs (%d).", input_names.size(), input_defs.size())); PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(), platform::errors::InvalidArgument( "the size of outputs_args names (%d) must be equal to " "the size of kernel output_defs (%d).", output_names.size(), output_defs.size())); PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(), platform::errors::InvalidArgument( "the size of attribute_args names (%d) must be equal " "to the size of kernel attribute_defs (%d).", attr_names.size(), attr_defs.size())); for (size_t i = 0; i < input_names.size(); ++i) { auto it = ins.find(input_names[i]); size_t start_idx = (i == 0 ? 0 : kernel_ctx->InputRangeAt(i - 1).second); if ((it == ins.end()) && (input_defs[i].type_index == std::type_index(typeid(paddle::optional)))) { kernel_ctx->EmplaceBackInputWithoutSetRange(nullptr); auto end_idx = start_idx + 1; kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i); } else { auto ins_vector = it->second; size_t end_idx = start_idx + ins_vector.size(); for (size_t offset = 0; offset < ins_vector.size(); ++offset) { const pten::TensorBase* tensor_in = nullptr; auto& var = ins_vector[offset]->Var(); if (var.template IsType()) { tensor_in = &(var.template Get()); } else if (var.template IsType()) { tensor_in = &(var.template Get()); } else { PADDLE_THROW(platform::errors::Unimplemented( "Unsupported input `%s` type when call pt kernel.", framework::ToTypeName(var.Type()))); } kernel_ctx->EmplaceBackInputWithoutSetRange(tensor_in); } kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i); } } for (size_t i = 0; i < output_names.size(); ++i) { size_t start_idx = (i == 0 ? 0 : kernel_ctx->OutputRangeAt(i - 1).second); auto iter = outs.find(output_names[i]); if (iter == outs.end()) { kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr}); kernel_ctx->AssignOutputRange(std::make_pair(start_idx, start_idx + 1), i); continue; } auto& outs_vector = iter->second; size_t end_idx = start_idx + outs_vector.size(); for (size_t offset = 0; offset < outs_vector.size(); ++offset) { if (outs_vector[offset] == nullptr) { kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr}); continue; } pten::TensorBase* tensor_out = nullptr; auto* var = outs_vector[offset]->MutableVar(); if (var->template IsType()) { tensor_out = var->template GetMutable(); } else if (var->template IsType()) { tensor_out = var->template GetMutable(); } else { PADDLE_THROW(platform::errors::Unimplemented( "Unsupported output `%s` type when call pt kernel.", framework::ToTypeName(var->Type()))); } experimental::ResetTensorDtypeAndLayoutByArgDef(tensor_out, output_defs.at(i)); framework::SetAllocationForOutputTenosr( tensor_out, pten::TransToPtenPlace(output_defs.at(i).backend)); kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out); } kernel_ctx->AssignOutputRange(std::make_pair(start_idx, end_idx), i); } for (size_t i = 0; i < attr_names.size(); ++i) { if (attr_defs[i].type_index == std::type_index(typeid(pten::ScalarArray))) { if (attrs.find(attr_names[i]) != attrs.end()) { // shape is in the attribute auto& attr = GetAttr(attrs, default_attrs, attr_names[i]); if (std::type_index(attr.type()) == std::type_index(typeid(std::vector))) { kernel_ctx->EmplaceBackAttr(std::move( pten::ScalarArray(BOOST_GET_CONST(std::vector, attr)))); } else if (std::type_index(attr.type()) == std::type_index(typeid(std::vector))) { kernel_ctx->EmplaceBackAttr(std::move( pten::ScalarArray(BOOST_GET_CONST(std::vector, attr)))); } else if (std::type_index(attr.type()) == std::type_index(typeid(int64_t))) { kernel_ctx->EmplaceBackAttr( std::move(pten::ScalarArray(&BOOST_GET_CONST(int64_t, attr), 1))); } else if (std::type_index(attr.type()) == std::type_index(typeid(int32_t))) { kernel_ctx->EmplaceBackAttr( std::move(pten::ScalarArray(&BOOST_GET_CONST(int32_t, attr), 1))); } else if (attr_defs[i].type_index == std::type_index(typeid(std::vector))) { const auto& vector_int_attr = BOOST_GET_CONST(std::vector, attr); kernel_ctx->EmplaceBackAttr(vector_int_attr); } else { PADDLE_THROW(platform::errors::Unimplemented( "Unsupported cast op attribute `%s` to VectorTensor when " "construct KernelContext.", attr_names[i])); } } else { // shape is in the input auto& ins_vector = ins.at(attr_names[i]); if (ins_vector.size() == 1) { // ShapeTensor kernel_ctx->EmplaceBackAttr(std::move( experimental::MakePtenScalarArrayFromVar(ins_vector[0]->Var()))); } else { // ShapeTensorList std::vector variables; variables.reserve(ins_vector.size()); for (const auto& var_base : ins_vector) { variables.push_back(var_base->MutableVar()); } kernel_ctx->EmplaceBackAttr(std::move( experimental::MakePtenScalarArrayFromVarList(variables))); } } } else if (attr_defs[i].type_index == std::type_index(typeid(pten::Scalar))) { // TODO(chenweihang): support other attrs later // TODO(zhangyunfei): Scalar should hold scaler type, and we should check // attribtue type by attr_defs if (attrs.find(attr_names[i]) != attrs.end() || default_attrs.find(attr_names[i]) != default_attrs.end()) { // scalar is in the attribute auto& attr = GetAttr(attrs, default_attrs, attr_names[i]); if (std::type_index(attr.type()) == std::type_index(typeid(float))) { kernel_ctx->EmplaceBackAttr( std::move(pten::Scalar(BOOST_GET_CONST(float, attr)))); } else if (std::type_index(attr.type()) == std::type_index(typeid(std::string))) { kernel_ctx->EmplaceBackAttr( std::move(pten::Scalar(BOOST_GET_CONST(std::string, attr)))); } else if (std::type_index(attr.type()) == std::type_index(typeid(int))) { kernel_ctx->EmplaceBackAttr( std::move(pten::Scalar(BOOST_GET_CONST(int, attr)))); } else { PADDLE_THROW(platform::errors::Unimplemented( "Unsupported cast op attribute `%s` to Scalar when construct " "KernelContext in dygraph.", attr_names[i])); } } else { // scalar is in the input auto& ins_vector = ins.at(attr_names[i]); kernel_ctx->EmplaceBackAttr(std::move( experimental::MakePtenScalarFromVar(ins_vector[0]->Var()))); } } else { // TODO(chenweihang): support other attrs later auto& attr = GetAttr(attrs, default_attrs, attr_names[i]); if (attr_defs[i].type_index == std::type_index(typeid(int))) { kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int, attr)); } else if (attr_defs[i].type_index == std::type_index(typeid(float))) { kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(float, attr)); } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) { kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(bool, attr)); } else if (attr_defs[i].type_index == std::type_index(typeid(int64_t))) { kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int64_t, attr)); } else if (attr_defs[i].type_index == std::type_index(typeid(std::string))) { kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(std::string, attr)); } else if (attr_defs[i].type_index == std::type_index(typeid(pten::DataType))) { auto data_type = pten::TransToPtenDataType( static_cast( BOOST_GET_CONST(int, attr))); kernel_ctx->EmplaceBackAttr(data_type); } else if (attr_defs[i].type_index == std::type_index(typeid(std::vector))) { if (std::type_index(attr.type()) == std::type_index(typeid(std::vector))) { // Emplace Back Attr according to the type of Pten_Kernel args. const auto& vector_int_attr = BOOST_GET_CONST(std::vector, attr); const std::vector vector_int64_attr(vector_int_attr.begin(), vector_int_attr.end()); kernel_ctx->EmplaceBackAttr(vector_int64_attr); } // TODO(YuanRisheng) Need support vector attr } else { PADDLE_THROW(platform::errors::Unimplemented( "Unsupported cast op attribute `%s` when construct " "KernelContext in dygraph.", attr_names[i])); } } } } template void PreparePtenData(const pten::Kernel& pt_kernel, const framework::KernelSignature& pt_kernel_signature, const NameVarMap& ins) { auto& input_names = std::get<0>(pt_kernel_signature.args); auto& input_defs = pt_kernel.args_def().input_defs(); PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(), platform::errors::InvalidArgument( "the size of inputs_args names (%d) must be equal to " "the size of kernel input_defs (%d).", input_names.size(), input_defs.size())); for (size_t i = 0; i < input_names.size(); ++i) { auto& in_def = input_defs.at(i); auto it = ins.find(input_names[i]); if (it == ins.end()) { continue; } auto& ins_vector = ins.at(input_names[i]); for (size_t offset = 0; offset < ins_vector.size(); ++offset) { auto var = ins_vector[offset]; const auto* tensor_in = GetTensorFromVar(var->Var()); if (tensor_in && tensor_in->IsInitialized()) { auto expected_place = pten::TransToPtenPlace(in_def.backend); if (platform::is_same_place(tensor_in->place(), expected_place)) { continue; } VLOG(3) << "Pten Transform Variable " << input_names[i] << " from " << tensor_in->place() << " to " << expected_place; framework::Tensor tmp_tensor; framework::TensorCopySync(*tensor_in, expected_place, &tmp_tensor); SetTensorToVariable(var->Var(), tmp_tensor, var->MutableVar()); } } } } } // namespace imperative } // namespace paddle