// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/infershape_utils.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_version_registry.h" #include "paddle/phi/core/infermeta_utils.h" #include "paddle/phi/infermeta/backward.h" #include "paddle/phi/infermeta/unary.h" namespace paddle { namespace operators { class ChannelShuffleOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; }; class ChannelShuffleOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor, default Tensor), " "the input feature data of ChannelShuffleOp, the layout is " "[N, C, H, W] or [N, H, W, C]."); AddOutput("Out", "(Tensor, default Tensor), the output of " "ChannelShuffleOp. The layout is also [N, C, " "H, W] or [N, H, W, C]."); AddAttr("groups", "number of groups to divide channels in."); AddAttr( "data_format", "An optional string from: \"NHWC\", \"NCHW\". " "Defaults to \"NHWC\", Specify the data format of the input data.") .SetDefault("NCHW"); AddComment(R"DOC( Channel Shuffle operator This operator divides channels in a tensor of shape :math:`(*, C, H, W)` into :math:`g` groups and rearranges them as :math:`(*, C/g, g, H, W)` while keeping the original tensor shape. Please refer to the paper: `ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices `_ by Zhang et. al (2017) for more details. )DOC"); } }; class ChannelShuffleGradOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; }; template class ChannelShuffleGradOpMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("channel_shuffle_grad"); op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); op->SetAttrMap(this->Attrs()); op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; DECLARE_INFER_SHAPE_FUNCTOR(channel_shuffle, ChannelShuffleInferShapeFunctor, PD_INFER_META(phi::ChannelShuffleInferMeta)); REGISTER_OPERATOR(channel_shuffle, ops::ChannelShuffleOp, ops::ChannelShuffleOpMaker, ops::ChannelShuffleGradOpMaker, ops::ChannelShuffleGradOpMaker, ChannelShuffleInferShapeFunctor); DECLARE_INFER_SHAPE_FUNCTOR(channel_shuffle_grad, ChannelShuffleGradInferShapeFunctor, PD_INFER_META(phi::ChannelShuffleGradInferMeta)); REGISTER_OPERATOR(channel_shuffle_grad, ops::ChannelShuffleGradOp, ChannelShuffleGradInferShapeFunctor);