/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. Indicesou may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef PADDLE_WITH_XPU #include #include #include #include "paddle/fluid/framework/data_layout.h" #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" namespace paddle { namespace operators { template class AffineChannelXPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* scale = ctx.Input("Scale"); auto* bias = ctx.Input("Bias"); auto* y = ctx.Output("Out"); y->mutable_data(ctx.GetPlace()); const framework::DataLayout layout = framework::StringToDataLayout(ctx.Attr("data_layout")); auto dims = x->dims(); int N = dims[0]; int C = layout == framework::DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1]; int HxW = x->numel() / N / C; auto* scale_d = scale->data(); auto* bias_d = bias->data(); auto* x_d = x->data(); auto* y_d = y->data(); auto& dev_ctx = ctx.template device_context(); std::vector x_shape; std::vector b_shape; if (layout == framework::DataLayout::kNCHW) { x_shape.push_back(N); x_shape.push_back(C); x_shape.push_back(HxW); b_shape.push_back(1); b_shape.push_back(C); b_shape.push_back(1); } else { x_shape.push_back(N * HxW); x_shape.push_back(C); b_shape.push_back(1); b_shape.push_back(C); } int r = 0; r = xpu::broadcast_mul( dev_ctx.x_context(), x_d, scale_d, y_d, x_shape, b_shape); PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS, platform::errors::External( "The broadcast_mul XPU OP return wrong value[%d %s]", r, XPUAPIErrorMsg[r])); r = xpu::broadcast_add( dev_ctx.x_context(), y_d, bias_d, y_d, x_shape, b_shape); PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS, platform::errors::External( "The broadcast_add XPU OP return wrong value[%d %s]", r, XPUAPIErrorMsg[r])); } }; template class AffineChannelGradXPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* scale = ctx.Input("Scale"); auto* dy = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); auto* dscale = ctx.Output(framework::GradVarName("Scale")); auto* dbias = ctx.Output(framework::GradVarName("Bias")); const framework::DataLayout layout = framework::StringToDataLayout(ctx.Attr("data_layout")); auto dims = x->dims(); int N = dims[0]; int C = layout == framework::DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1]; int HxW = x->numel() / N / C; auto* dy_d = dy->data(); auto* scale_d = scale->data(); T* dx_d = dx ? dx->mutable_data(ctx.GetPlace()) : nullptr; T* dscale_d = dscale ? dscale->mutable_data(ctx.GetPlace()) : nullptr; T* dbias_d = dbias ? dbias->mutable_data(ctx.GetPlace()) : nullptr; auto& dev_ctx = ctx.template device_context(); std::vector x_shape; std::vector b_shape; std::vector rdims; if (layout == framework::DataLayout::kNCHW) { x_shape.push_back(N); x_shape.push_back(C); x_shape.push_back(HxW); b_shape.push_back(1); b_shape.push_back(C); b_shape.push_back(1); rdims.push_back(0); rdims.push_back(2); } else { x_shape.push_back(N * HxW); x_shape.push_back(C); b_shape.push_back(1); b_shape.push_back(C); rdims.push_back(0); } int r = 0; if (dscale_d && dbias_d) { r = xpu::reduce_sum( dev_ctx.x_context(), dy_d, dbias_d, x_shape, rdims); PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS, platform::errors::External( "The reduce_sum XPU OP return wrong value[%d %s]", r, XPUAPIErrorMsg[r])); T* tmp = nullptr; r = xpu_malloc(reinterpret_cast(&tmp), dy->numel() * sizeof(T)); PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS, platform::errors::External("no enough memory in xpu")); r = xpu::mul( dev_ctx.x_context(), dy_d, x->data(), tmp, dy->numel()); PADDLE_ENFORCE_EQ( r, xpu::Error_t::SUCCESS, platform::errors::External("The mul XPU OP return wrong value[%d %s]", r, XPUAPIErrorMsg[r])); r = xpu::reduce_sum( dev_ctx.x_context(), tmp, dscale_d, x_shape, rdims); PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS, platform::errors::External( "The reduce_sum XPU OP return wrong value[%d %s]", r, XPUAPIErrorMsg[r])); if (dev_ctx.x_context()->xpu_stream) { dev_ctx.Wait(); } xpu_free(tmp); } if (dx_d) { r = xpu::broadcast_mul( dev_ctx.x_context(), dy_d, scale_d, dx_d, x_shape, b_shape); PADDLE_ENFORCE_EQ( r, xpu::Error_t::SUCCESS, platform::errors::External( "The broadcast_mul XPU OP return wrong value[%d %s]", r, XPUAPIErrorMsg[r])); } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; using XPU = paddle::platform::XPUDeviceContext; REGISTER_OP_XPU_KERNEL(affine_channel, ops::AffineChannelXPUKernel); REGISTER_OP_XPU_KERNEL(affine_channel_grad, ops::AffineChannelGradXPUKernel); #endif