# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from eager_op_test import OpTest from scipy import special import paddle from paddle.fluid import core np.random.seed(42) paddle.seed(42) def reference_i1(x): return special.i1(x) def reference_i1_grad(x, dout): eps = np.finfo(x.dtype).eps not_tiny = abs(x) > eps safe_x = np.where(not_tiny, x, eps) gradx = special.i0(safe_x) - special.i1(x) / safe_x gradx = np.where(not_tiny, gradx, 0.5) return dout * gradx class Testi1API(unittest.TestCase): DTYPE = "float64" DATA = [0, 1, 2, 3, 4, 5] def setUp(self): self.x = np.array(self.DATA).astype(self.DTYPE) self.place = [paddle.CPUPlace()] if core.is_compiled_with_cuda(): self.place.append(paddle.CUDAPlace(0)) def test_api_static(self): def run(place): paddle.enable_static() with paddle.static.program_guard(paddle.static.Program()): x = paddle.static.data( name="x", shape=self.x.shape, dtype=self.DTYPE ) out = paddle.i1(x) exe = paddle.static.Executor(place) res = exe.run( paddle.static.default_main_program(), feed={"x": self.x}, fetch_list=[out], ) out_ref = reference_i1(self.x) np.testing.assert_allclose(res[0], out_ref, rtol=1e-5) paddle.disable_static() for place in self.place: run(place) def test_api_dygraph(self): def run(place): paddle.disable_static(place) x = paddle.to_tensor(self.x) out = paddle.i1(x) out_ref = reference_i1(self.x) np.testing.assert_allclose(out.numpy(), out_ref, rtol=1e-5) paddle.enable_static() for place in self.place: run(place) def test_empty_input_error(self): for place in self.place: paddle.disable_static(place) x = None self.assertRaises(ValueError, paddle.i1, x) paddle.enable_static() class Testi1Float32Zero2EightCase(Testi1API): DTYPE = "float32" DATA = [0, 1, 2, 3, 4, 5, 6, 7, 8] class Testi1Float32OverEightCase(Testi1API): DTYPE = "float32" DATA = [9, 10, 11, 12, 13, 14, 15, 16, 17] class Testi1Float64Zero2EightCase(Testi1API): DTYPE = "float64" DATA = [0, 1, 2, 3, 4, 5, 6, 7, 8] class Testi1Float64OverEightCase(Testi1API): DTYPE = "float64" DATA = [9, 10, 11, 12, 13, 14, 15, 16, 17] class TestI1Op(OpTest): # 配置 op 信息以及输入输出等参数 def setUp(self): self.op_type = "i1" self.python_api = paddle.i1 self.init_config() self.outputs = {'out': self.target} # 测试前向输出结果 def test_check_output(self): self.check_output() # 测试反向梯度输出 def test_check_grad(self): self.check_grad( ['x'], 'out', user_defined_grads=[ reference_i1_grad( self.case, 1 / self.case.size, ) ], ) def init_config(self): # 生成随机的输入数据 zero_case = np.zeros(1).astype('float64') rand_case = np.random.randn(250).astype('float64') over_eight_case = np.random.uniform(low=8, high=9, size=250).astype( 'float64' ) self.case = np.concatenate([zero_case, rand_case, over_eight_case]) self.inputs = {'x': self.case} self.target = reference_i1(self.inputs['x']) if __name__ == "__main__": unittest.main()