# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import gradient_checker import numpy as np from decorator_helper import prog_scope from op_test import OpTest import paddle import paddle.fluid as fluid import paddle.fluid.core as core import paddle.fluid.layers as layers from paddle.fluid import Program, program_guard class TestSignOp(OpTest): def setUp(self): self.op_type = "sign" self.inputs = { 'X': np.random.uniform(-10, 10, (10, 10)).astype("float64") } self.outputs = {'Out': np.sign(self.inputs['X'])} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestSignOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): # The input type of sign_op must be Variable or numpy.ndarray. input1 = 12 self.assertRaises(TypeError, fluid.layers.sign, input1) # The input dtype of sign_op must be float16, float32, float64. input2 = fluid.layers.data( name='input2', shape=[12, 10], dtype="int32" ) input3 = fluid.layers.data( name='input3', shape=[12, 10], dtype="int64" ) self.assertRaises(TypeError, fluid.layers.sign, input2) self.assertRaises(TypeError, fluid.layers.sign, input3) input4 = fluid.layers.data( name='input4', shape=[4], dtype="float16" ) fluid.layers.sign(input4) class TestSignAPI(unittest.TestCase): def test_dygraph(self): with fluid.dygraph.guard(): np_x = np.array([-1.0, 0.0, -0.0, 1.2, 1.5], dtype='float64') x = paddle.to_tensor(np_x) z = paddle.sign(x) np_z = z.numpy() z_expected = np.sign(np_x) self.assertEqual((np_z == z_expected).all(), True) def test_static(self): with program_guard(Program(), Program()): # The input type of sign_op must be Variable or numpy.ndarray. input1 = 12 self.assertRaises(TypeError, paddle.tensor.math.sign, input1) # The input dtype of sign_op must be float16, float32, float64. input2 = fluid.layers.data( name='input2', shape=[12, 10], dtype="int32" ) input3 = fluid.layers.data( name='input3', shape=[12, 10], dtype="int64" ) self.assertRaises(TypeError, paddle.tensor.math.sign, input2) self.assertRaises(TypeError, paddle.tensor.math.sign, input3) input4 = fluid.layers.data( name='input4', shape=[4], dtype="float16" ) paddle.sign(input4) class TestSignDoubleGradCheck(unittest.TestCase): def sign_wrapper(self, x): return paddle.sign(x[0]) @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. eps = 0.005 dtype = np.float32 data = layers.data('data', [1, 4], False, dtype) data.persistable = True out = paddle.sign(data) data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype) gradient_checker.double_grad_check( [data], out, x_init=[data_arr], place=place, eps=eps ) fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True}) gradient_checker.double_grad_check_for_dygraph( self.sign_wrapper, [data], out, x_init=[data_arr], place=place ) def test_grad(self): paddle.enable_static() places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestSignTripleGradCheck(unittest.TestCase): def sign_wrapper(self, x): return paddle.sign(x[0]) @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. eps = 0.005 dtype = np.float32 data = layers.data('data', [1, 4], False, dtype) data.persistable = True out = paddle.sign(data) data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype) gradient_checker.triple_grad_check( [data], out, x_init=[data_arr], place=place, eps=eps ) fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True}) gradient_checker.triple_grad_check_for_dygraph( self.sign_wrapper, [data], out, x_init=[data_arr], place=place ) def test_grad(self): paddle.enable_static() places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) if __name__ == "__main__": paddle.enable_static() unittest.main()