# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import time import unittest import numpy as np from test_multiprocess_dataloader_static import ( BATCH_SIZE, CLASS_NUM, EPOCH_NUM, IMAGE_SIZE, SAMPLE_NUM, RandomBatchedDataset, RandomDataset, prepare_places, ) import paddle.fluid as fluid from paddle.fluid.dygraph.nn import Linear from paddle.io import DataLoader class SimpleFCNet(fluid.dygraph.Layer): def __init__(self): super().__init__() param_attr = fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.8) ) bias_attr = fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.5) ) self._fcs = [] in_channel = IMAGE_SIZE for hidden_size in [10, 20, 30]: self._fcs.append( Linear( in_channel, hidden_size, act='tanh', param_attr=param_attr, bias_attr=bias_attr, ) ) in_channel = hidden_size self._fcs.append( Linear( in_channel, CLASS_NUM, act='softmax', param_attr=param_attr, bias_attr=bias_attr, ) ) def forward(self, image): out = image for fc in self._fcs: out = fc(out) return out class TestDygraphDataLoader(unittest.TestCase): def run_main(self, num_workers, places, persistent_workers): fluid.default_startup_program().random_seed = 1 fluid.default_main_program().random_seed = 1 with fluid.dygraph.guard(places[0]): fc_net = SimpleFCNet() optimizer = fluid.optimizer.Adam(parameter_list=fc_net.parameters()) dataset = RandomDataset(SAMPLE_NUM, CLASS_NUM) dataloader = DataLoader( dataset, num_workers=num_workers, batch_size=BATCH_SIZE, drop_last=True, persistent_workers=persistent_workers, ) assert len(dataloader) == int(SAMPLE_NUM / BATCH_SIZE) step_list = [] loss_list = [] start_t = time.time() for _ in range(EPOCH_NUM): step = 0 for image, label in dataloader(): out = fc_net(image) loss = fluid.layers.cross_entropy(out, label) avg_loss = fluid.layers.reduce_mean(loss) avg_loss.backward() optimizer.minimize(avg_loss) fc_net.clear_gradients() loss_list.append(np.mean(avg_loss.numpy())) step += 1 step_list.append(step) end_t = time.time() ret = { "time": end_t - start_t, "step": step_list, "loss": np.array(loss_list), } print("time cost", ret['time'], 'step_list', ret['step']) return ret def test_main(self): # dynamic graph do not run with_data_parallel for p in prepare_places(False): for persistent_workers in [False, True]: results = [] for num_workers in [0, 2]: print( self.__class__.__name__, p, num_workers, persistent_workers, ) sys.stdout.flush() ret = self.run_main( num_workers=num_workers, places=p, persistent_workers=persistent_workers, ) results.append(ret) diff = np.max( np.abs(results[0]['loss'] - results[1]['loss']) / np.abs(results[0]['loss']) ) self.assertLess(diff, 1e-2) class TestDygraphDataLoaderWithBatchedDataset(TestDygraphDataLoader): def run_main(self, num_workers, places, persistent_workers): fluid.default_startup_program().random_seed = 1 fluid.default_main_program().random_seed = 1 with fluid.dygraph.guard(places[0]): fc_net = SimpleFCNet() optimizer = fluid.optimizer.Adam(parameter_list=fc_net.parameters()) dataset = RandomBatchedDataset(SAMPLE_NUM, CLASS_NUM) dataloader = DataLoader( dataset, num_workers=num_workers, batch_size=None, drop_last=True, persistent_workers=persistent_workers, ) assert len(dataloader) == int(SAMPLE_NUM / BATCH_SIZE) step_list = [] loss_list = [] start_t = time.time() for _ in range(EPOCH_NUM): step = 0 for image, label in dataloader(): out = fc_net(image) loss = fluid.layers.cross_entropy(out, label) avg_loss = fluid.layers.reduce_mean(loss) avg_loss.backward() optimizer.minimize(avg_loss) fc_net.clear_gradients() loss_list.append(np.mean(avg_loss.numpy())) step += 1 step_list.append(step) end_t = time.time() ret = { "time": end_t - start_t, "step": step_list, "loss": np.array(loss_list), } print("time cost", ret['time'], 'step_list', ret['step']) return ret if __name__ == '__main__': unittest.main()