# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import gradient_checker import numpy as np from decorator_helper import prog_scope from op_test import OpTest, OpTestTool from test_sum_op import TestReduceOPTensorAxisBase import paddle import paddle.fluid as fluid import paddle.fluid.core as core import paddle.fluid.layers as layers from paddle.fluid import Program, program_guard np.random.seed(10) def mean_wrapper(x, axis=None, keepdim=False, reduce_all=False): if reduce_all: return paddle.mean(x, list(range(len(x.shape))), keepdim) return paddle.mean(x, axis, keepdim) def reduce_mean_wrapper(x, axis=0, keepdim=False, reduce_all=False): if reduce_all: return paddle.mean(x, list(range(len(x.shape))), keepdim) return paddle.mean(x, axis, keepdim) class TestMeanOp(OpTest): def setUp(self): self.op_type = "mean" self.python_api = paddle.mean self.dtype = np.float64 self.init_dtype_type() self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)} self.outputs = {'Out': np.mean(self.inputs["X"])} def init_dtype_type(self): pass def test_check_output(self): self.check_output(check_eager=True) def test_checkout_grad(self): self.check_grad(['X'], 'Out', check_eager=True) class TestMeanOp_ZeroDim(OpTest): def setUp(self): self.op_type = "mean" self.python_api = paddle.mean self.dtype = np.float64 self.inputs = {'X': np.random.random([]).astype(self.dtype)} self.outputs = {'Out': np.mean(self.inputs["X"])} def test_check_output(self): self.check_output(check_eager=True) def test_checkout_grad(self): self.check_grad(['X'], 'Out', check_eager=True) class TestMeanOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): # The input type of mean_op must be Variable. input1 = 12 self.assertRaises(TypeError, paddle.mean, input1) # The input dtype of mean_op must be float16, float32, float64. input2 = fluid.layers.data( name='input2', shape=[12, 10], dtype="int32" ) self.assertRaises(TypeError, paddle.mean, input2) input3 = fluid.layers.data( name='input3', shape=[4], dtype="float16" ) paddle.nn.functional.softmax(input3) @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestFP16MeanOp(TestMeanOp): def init_dtype_type(self): self.dtype = np.float16 self.__class__.no_need_check_grad = True def test_check_output(self): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, check_eager=True) def test_checkout_grad(self): place = core.CUDAPlace(0) if core.is_float16_supported(place): with fluid.dygraph.guard(): x_np = np.random.random((10, 10)).astype(self.dtype) x = paddle.to_tensor(x_np) x.stop_gradient = False y = paddle.mean(x) dx = paddle.grad(y, x)[0].numpy() dx_expected = self.dtype(1.0 / np.prod(x_np.shape)) * np.ones( x_np.shape ).astype(self.dtype) np.testing.assert_array_equal(dx, dx_expected) @OpTestTool.skip_if_not_cpu_bf16() class TestBF16MeanOp(TestMeanOp): def init_dtype_type(self): self.dtype = np.uint16 def test_check_output(self): paddle.enable_static() self.check_output_with_place(core.CPUPlace(), check_eager=True) def test_checkout_grad(self): place = core.CPUPlace() self.check_grad_with_place(place, ['X'], 'Out', check_eager=True) def ref_reduce_mean(x, axis=None, keepdim=False, reduce_all=False): if isinstance(axis, list): axis = tuple(axis) if reduce_all: axis = None return np.mean(x, axis=axis, keepdims=keepdim) def ref_reduce_mean_grad(x, axis, dtype, reduce_all): if reduce_all: axis = list(range(x.ndim)) shape = [x.shape[i] for i in axis] return (1.0 / np.prod(shape) * np.ones(shape)).astype(dtype) class TestReduceMeanOp(OpTest): def setUp(self): self.op_type = 'reduce_mean' self.python_api = reduce_mean_wrapper self.dtype = 'float64' self.shape = [2, 3, 4, 5] self.axis = [0] self.keepdim = False self.set_attrs() np.random.seed(10) x_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype) if not hasattr(self, "reduce_all"): self.reduce_all = (not self.axis) or len(self.axis) == len(x_np) out_np = ref_reduce_mean(x_np, self.axis, self.keepdim, self.reduce_all) self.inputs = {'X': x_np} self.outputs = {'Out': out_np} self.attrs = { 'dim': self.axis, 'keep_dim': self.keepdim, 'reduce_all': self.reduce_all, } if self.dtype == 'float16': self.__class__.no_need_check_grad = True def set_attrs(self): pass def test_check_output(self): if self.dtype != 'float16': self.check_output(check_eager=True) else: if not core.is_compiled_with_cuda(): return place = paddle.CUDAPlace(0) self.check_output_with_place(place=place) def test_check_grad(self): if self.dtype != 'float16': self.check_grad(['X'], ['Out'], check_eager=True) else: if not core.is_compiled_with_cuda(): return place = paddle.CUDAPlace(0) if core.is_float16_supported(place): return with fluid.dygraph.guard(place=place): x = paddle.tensor(self.inputs['X']) y = paddle.mean( x, axis=self.attrs['dim'], keepdim=self.attrs['keep_dim'] ) dx = paddle.grad(y, x)[0].numpy() dx_expected = ref_reduce_mean_grad( self.inputs['X'], self.attrs['dim'], self.dtype, self.attrs['reduce_all'], ) np.testing.assert_array_equal(dx, dx_expected) class TestReduceMeanOpDefaultAttrs(TestReduceMeanOp): def setUp(self): self.op_type = 'reduce_mean' self.python_api = reduce_mean_wrapper self.dtype = 'float64' self.shape = [2, 3, 4, 5] x_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype) out_np = np.mean(x_np, axis=0) self.inputs = {'X': x_np} self.outputs = {'Out': out_np} class TestReduceMeanOpFloat32(TestReduceMeanOp): def set_attrs(self): self.dtype = 'float32' class TestReduceMeanOpFloat16(TestReduceMeanOp): def set_attrs(self): self.dtype = 'float16' class TestReduceMeanOpShape1D(TestReduceMeanOp): def set_attrs(self): self.shape = [100] class TestReduceMeanOpShape1DFP16(TestReduceMeanOp): def set_attrs(self): self.shape = [100] self.dtype = 'float16' class TestReduceMeanOpShape6D(TestReduceMeanOp): def set_attrs(self): self.shape = [2, 3, 4, 5, 6, 7] class TestReduceMeanOpShape6DFP16(TestReduceMeanOp): def set_attrs(self): self.shape = [2, 3, 4, 5, 6, 7] self.dtype = 'float16' class TestReduceMeanOpAxisAll(TestReduceMeanOp): def set_attrs(self): self.axis = [0, 1, 2, 3] class TestReduceMeanOpAxisAllFP16(TestReduceMeanOp): def set_attrs(self): self.axis = [0, 1, 2, 3] self.dtype = 'float16' class TestReduceMeanOpAxisTuple(TestReduceMeanOp): def set_attrs(self): self.axis = (0, 1, 2) class TestReduceMeanOpAxisTupleFP16(TestReduceMeanOp): def set_attrs(self): self.axis = (0, 1, 2) self.dtype = 'float16' class TestReduceMeanOpAxisNegative(TestReduceMeanOp): def set_attrs(self): self.axis = [-2, -1] class TestReduceMeanOpAxisNegativeFP16(TestReduceMeanOp): def set_attrs(self): self.axis = [-2, -1] self.dtype = 'float16' class TestReduceMeanOpKeepdimTrue1(TestReduceMeanOp): def set_attrs(self): self.keepdim = True class TestReduceMeanOpKeepdimTrue1FP16(TestReduceMeanOp): def set_attrs(self): self.keepdim = True self.dtype = 'float16' class TestReduceMeanOpKeepdimTrue2(TestReduceMeanOp): def set_attrs(self): self.axis = [0, 1, 2, 3] self.keepdim = True class TestReduceMeanOpKeepdimTrue2FP16(TestReduceMeanOp): def set_attrs(self): self.axis = [0, 1, 2, 3] self.keepdim = True self.dtype = 'float16' class TestReduceMeanOpReduceAllTrue(TestReduceMeanOp): def set_attrs(self): self.reduce_all = True class TestReduceMeanOpReduceAllTrueFP16(TestReduceMeanOp): def set_attrs(self): self.reduce_all = True self.dtype = 'float16' class TestMeanAPI(unittest.TestCase): # test paddle.tensor.stat.mean def setUp(self): self.x_shape = [2, 3, 4, 5] self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32) self.place = ( paddle.CUDAPlace(0) if core.is_compiled_with_cuda() else paddle.CPUPlace() ) def test_api_static(self): paddle.enable_static() with paddle.static.program_guard(paddle.static.Program()): x = paddle.fluid.data('X', self.x_shape) out1 = paddle.mean(x) out2 = paddle.tensor.mean(x) out3 = paddle.tensor.stat.mean(x) axis = np.arange(len(self.x_shape)).tolist() out4 = paddle.mean(x, axis) out5 = paddle.mean(x, tuple(axis)) exe = paddle.static.Executor(self.place) res = exe.run( feed={'X': self.x}, fetch_list=[out1, out2, out3, out4, out5] ) out_ref = np.mean(self.x) for out in res: np.testing.assert_allclose(out, out_ref, rtol=0.0001) def test_api_dygraph(self): paddle.disable_static(self.place) def test_case(x, axis=None, keepdim=False): x_tensor = paddle.to_tensor(x) out = paddle.mean(x_tensor, axis, keepdim) if isinstance(axis, list): axis = tuple(axis) if len(axis) == 0: axis = None out_ref = np.mean(x, axis, keepdims=keepdim) np.testing.assert_allclose(out.numpy(), out_ref, rtol=0.0001) test_case(self.x) test_case(self.x, []) test_case(self.x, -1) test_case(self.x, keepdim=True) test_case(self.x, 2, keepdim=True) test_case(self.x, [0, 2]) test_case(self.x, (0, 2)) test_case(self.x, [0, 1, 2, 3]) paddle.enable_static() def test_fluid_api(self): with fluid.program_guard(fluid.Program(), fluid.Program()): x = fluid.data("x", shape=[10, 10], dtype="float32") out = paddle.mean(x=x, axis=1) place = fluid.CPUPlace() exe = fluid.Executor(place) x_np = np.random.rand(10, 10).astype(np.float32) res = exe.run(feed={"x": x_np}, fetch_list=[out]) np.testing.assert_allclose(res[0], np.mean(x_np, axis=1), rtol=1e-05) with fluid.dygraph.guard(): x_np = np.random.rand(10, 10).astype(np.float32) x = fluid.dygraph.to_variable(x_np) out = paddle.mean(x=x, axis=1) np.testing.assert_allclose( out.numpy(), np.mean(x_np, axis=1), rtol=1e-05 ) def test_errors(self): paddle.disable_static() x = np.random.uniform(-1, 1, [10, 12]).astype('float32') x = paddle.to_tensor(x) self.assertRaises(Exception, paddle.mean, x, -3) self.assertRaises(Exception, paddle.mean, x, 2) paddle.enable_static() with paddle.static.program_guard(paddle.static.Program()): x = paddle.fluid.data('X', [10, 12], 'int32') self.assertRaises(TypeError, paddle.mean, x) class TestMeanWithTensorAxis1(TestReduceOPTensorAxisBase): def init_data(self): self.pd_api = paddle.mean self.np_api = np.mean self.x = paddle.randn([10, 5, 9, 9], dtype='float64') self.np_axis = np.array([1, 2], dtype='int64') self.tensor_axis = paddle.to_tensor([1, 2], dtype='int64') class TestMeanWithTensorAxis2(TestReduceOPTensorAxisBase): def init_data(self): self.pd_api = paddle.mean self.np_api = np.mean self.x = paddle.randn([10, 10, 9, 9], dtype='float64') self.np_axis = np.array([0, 1, 2], dtype='int64') self.tensor_axis = [ 0, paddle.to_tensor([1], 'int64'), paddle.to_tensor([2], 'int64'), ] class TestMeanDoubleGradCheck(unittest.TestCase): def mean_wrapper(self, x): return paddle.mean(x[0]) @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. eps = 0.005 dtype = np.float32 data = layers.data('data', [3, 4, 5], False, dtype) data.persistable = True out = paddle.mean(data) data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype) gradient_checker.double_grad_check( [data], out, x_init=[data_arr], place=place, eps=eps ) gradient_checker.double_grad_check_for_dygraph( self.mean_wrapper, [data], out, x_init=[data_arr], place=place ) def test_grad(self): paddle.enable_static() places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestMeanTripleGradCheck(unittest.TestCase): def mean_wrapper(self, x): return paddle.mean(x[0]) @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. eps = 0.005 dtype = np.float32 data = layers.data('data', [3, 4, 5], False, dtype) data.persistable = True out = paddle.mean(data) data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype) gradient_checker.triple_grad_check( [data], out, x_init=[data_arr], place=place, eps=eps ) gradient_checker.triple_grad_check_for_dygraph( self.mean_wrapper, [data], out, x_init=[data_arr], place=place ) def test_grad(self): paddle.enable_static() places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) if __name__ == "__main__": paddle.enable_static() unittest.main()