# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .. import functional as F from paddle.nn import Layer __all__ = [] class ReLU(Layer): """ Sparse ReLU Activation. .. math:: ReLU(x) = max(x, 0) Parameters: name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Shape: - input: Sparse Tensor with any shape. - output: Sparse Tensor with the same shape as input. Examples: .. code-block:: python import paddle from paddle.fluid.framework import _test_eager_guard with _test_eager_guard(): x = [[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]] dense_x = paddle.to_tensor(x, dtype='float32') sparse_dim = 2 sparse_x = dense_x.to_sparse_coo(sparse_dim) relu = paddle.incubate.sparse.nn.ReLU() out = relu(sparse_x) #out.values: [0., 2., 0., 4., 5.] """ def __init__(self, name=None): super(ReLU, self).__init__() self._name = name def forward(self, x): return F.relu(x, self._name) def extra_repr(self): name_str = 'name={}'.format(self._name) if self._name else '' return name_str