// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/phi/core/ddim.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/enforce.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/eigen/eigen_function.h" // TODO(paddle-dev): Remove this file when we can call related Kernel directly namespace phi { namespace funcs { template void EigenSliceWrapper(const Context& dev_ctx, const DenseTensor* in, const std::vector& start, const std::vector& end, DenseTensor* out) { // Slice by call Eigen Tensor Function `.slice()` size_t rank = in->dims().size(); PADDLE_ENFORCE_EQ(start.size(), rank, errors::InvalidArgument( "EigenSliceWrapper function start " "argument must have the same length as input rank.")); PADDLE_ENFORCE_EQ(end.size(), rank, errors::InvalidArgument( "EigenSliceWrapper function end " "argument must have the same length as input rank.")); auto eigen_place_ptr = dev_ctx.eigen_device(); auto eigen_place = *eigen_place_ptr; auto out_t = phi::EigenTensor::From(*out, out->dims()); auto in_t = phi::EigenTensor::From(*in, in->dims()); Eigen::DSizes offsets_32bit, extents_32bit; for (size_t i = 0; i < D; i++) { offsets_32bit[i] = start[i]; extents_32bit[i] = end[i]; } EigenSlice, T, D>::Eval( eigen_place, phi::To32BitIndex(out_t), phi::To32BitIndex(in_t), offsets_32bit, extents_32bit); } #define SLICE_RANK_CASE(N) \ case N: { \ EigenSliceWrapper(dev_ctx, &x, offset, extends, &ret); \ break; \ } template DenseTensor Slice(const Context& dev_ctx, const DenseTensor& x, std::vector axes, std::vector starts, std::vector ends) { DenseTensor ret; std::vector new_axes = axes; std::vector out_shape = phi::vectorize(x.dims()); size_t rank = out_shape.size(); PADDLE_ENFORCE_EQ( axes.size(), starts.size(), errors::InvalidArgument("Slice Operator Argument Invalided")); PADDLE_ENFORCE_EQ( ends.size(), starts.size(), errors::InvalidArgument("Slice Operator Argument Invalided")); for (unsigned int i = 0; i < axes.size(); ++i) { int axis = axes[i]; if (axis < 0) axis = rank + axis; new_axes[i] = axis; // change negative to positive int st = starts[i]; int ed = ends[i]; PADDLE_ENFORCE_GT( ed, st, errors::InvalidArgument("C++ Slice Operation Not Support End < Start")); out_shape[axis] = ed - st; } std::vector offset(rank), extends(rank); for (size_t i = 0; i < rank; ++i) { offset[i] = 0; extends[i] = x.dims()[i]; } for (size_t i = 0; i < new_axes.size(); ++i) { offset[new_axes[i]] = starts[i]; extends[new_axes[i]] = ends[i] - starts[i]; } ret.Resize(phi::make_ddim(out_shape)); dev_ctx.template Alloc(&ret); switch (rank) { SLICE_RANK_CASE(1); SLICE_RANK_CASE(2); SLICE_RANK_CASE(3); SLICE_RANK_CASE(4); SLICE_RANK_CASE(5); SLICE_RANK_CASE(6); default: { PADDLE_THROW( errors::InvalidArgument("Invalid Rank number, " "currently only support rank between 2~6")); } } return ret; } // Use in conv_transpose kernel template static void Slice(const Context& ctx, const DenseTensor* input, DenseTensor* out, const std::vector& begin_vec, const std::vector& end_vec, const std::vector& axes_vec) { auto& place = *ctx.eigen_device(); auto in_dims = input->dims(); auto offsets = Eigen::DSizes(); auto extents = Eigen::DSizes(); for (size_t i = 0; i < D; ++i) { offsets[i] = 0; extents[i] = in_dims[i]; } std::vector out_shape_vec = vectorize(in_dims); for (size_t i = 0; i < axes_vec.size(); ++i) { offsets[axes_vec[i]] = begin_vec[i]; extents[axes_vec[i]] = end_vec[i] - begin_vec[i]; out_shape_vec[axes_vec[i]] = end_vec[i] - begin_vec[i]; } DDim out_dims(make_ddim(out_shape_vec)); out->Resize(out_dims); ctx.template Alloc(out); auto in_t = EigenTensor::From(*input); auto out_t = EigenTensor::From( *out, out_dims); funcs::EigenSlice, T, D>::Eval( place, out_t, in_t, offsets, extents); out->Resize(out_dims); } template static void Slice(const Context& ctx, const DenseTensor* input, DenseTensor* out, int64_t begin_idx, int64_t end_idx, int64_t axes) { std::vector begin_vec = {begin_idx}; std::vector end_vec = {end_idx}; std::vector axes_vec = {axes}; Slice(ctx, input, out, begin_vec, end_vec, axes_vec); } } // namespace funcs } // namespace phi