// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/top_k_function_cuda.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/eigen/eigen_function.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/kthvalue_kernel.h" namespace phi { inline int getBlockSize(int col) { if (col > 512) return 1024; else if (col > 256 && col <= 512) return 512; else if (col > 128 && col <= 256) return 256; else if (col > 64 && col <= 128) return 128; else return 64; } template bool SortKthvalue(const phi::GPUContext& dev_ctx, const DenseTensor* input_tensor, const int64_t num_cols, const int64_t num_rows, const int k, DenseTensor* out_tensor, DenseTensor* indices_tensor) { auto cu_stream = dev_ctx.stream(); DenseTensor input_indices; const std::vector dims = {num_rows, num_cols}; auto dim = phi::make_ddim(dims); input_indices.Resize(dim); dev_ctx.template Alloc(&input_indices); size_t temp_storage_bytes = -1; int block_size = getBlockSize(num_cols); unsigned int maxGridDimX = dev_ctx.GetCUDAMaxGridDimSize()[0]; unsigned int grid_size = num_rows < maxGridDimX ? static_cast(num_rows) : maxGridDimX; paddle::operators::InitIndex <<>>( input_indices.data(), num_rows, num_cols); cub::CountingInputIterator counting_iter(0); cub::TransformInputIterator> segment_offsets_t(counting_iter, paddle::operators::SegmentOffsetIter(num_cols)); T* sorted_values_ptr; int64_t* sorted_indices_ptr; DenseTensor temp_values, temp_indices; const T* input = input_tensor->data(); T* values = out_tensor->data(); int64_t* indices = indices_tensor->mutable_data(dev_ctx.GetPlace()); temp_values.Resize(dim); temp_indices.Resize(dim); sorted_values_ptr = dev_ctx.template Alloc(&temp_values); sorted_indices_ptr = dev_ctx.template Alloc(&temp_indices); auto err = cub::DeviceSegmentedRadixSort::SortPairs(nullptr, temp_storage_bytes, input, sorted_values_ptr, input_indices.data(), sorted_indices_ptr, num_cols * num_rows, num_rows, segment_offsets_t, segment_offsets_t + 1, 0, sizeof(T) * 8, cu_stream); #ifdef __HIPCC__ if (err != hipSuccess) { LOG(ERROR) << "KthvalueOP failed as could not launch " "hipcub::DeviceSegmentedRadixSort::SortPairs, status: " << hipGetErrorString(err); return false; } #else if (err != cudaSuccess) { LOG(ERROR) << "KthvalueOP failed as could not launch " "cub::DeviceSegmentedRadixSort::SortPairs, status: " << cudaGetErrorString(err); return false; } #endif DenseTensor temp_storage; temp_storage.Resize({static_cast(temp_storage_bytes / sizeof(uint8_t))}); uint8_t* temp_storage_data = dev_ctx.template Alloc(&temp_storage); err = cub::DeviceSegmentedRadixSort::SortPairs(temp_storage_data, temp_storage_bytes, input, sorted_values_ptr, input_indices.data(), sorted_indices_ptr, num_cols * num_rows, num_rows, segment_offsets_t, segment_offsets_t + 1, 0, sizeof(T) * 8, cu_stream); #ifdef __HIPCC__ if (err != hipSuccess) { LOG(ERROR) << "KthvalueOP failed as could not launch " "hipcub::DeviceSegmentedRadixSort::SortPairs, " << temp_storage_bytes << ", status: " << hipGetErrorString(err); return false; } #else if (err != cudaSuccess) { LOG(ERROR) << "KthvalueOP failed as could not launch " "cub::DeviceSegmentedRadixSort::SortPairs, " << temp_storage_bytes << ", status: " << cudaGetErrorString(err); return false; } #endif auto& dev = *dev_ctx.eigen_device(); const Eigen::DSizes slice_indices{0, k - 1}; const Eigen::DSizes slice_sizes{num_rows, 1}; auto e_indices = EigenMatrix::From(*indices_tensor, dim); auto e_tmp_indices = EigenMatrix::From(static_cast(temp_indices)); std::vector odims = {static_cast(num_rows), static_cast(1)}; dim = phi::make_ddim(odims); auto e_values = EigenMatrix::From(*out_tensor, dim); auto e_tmp_values = EigenMatrix::From(static_cast(temp_values)); funcs::EigenSlice, int64_t, 2>::Eval( dev, e_indices, e_tmp_indices, slice_indices, slice_sizes); funcs::EigenSlice, T, 2>::Eval( dev, e_values, e_tmp_values, slice_indices, slice_sizes); return true; } template void KthvalueKernel(const Context& dev_ctx, const DenseTensor& x, int k, int axis, bool keepdim, DenseTensor* output, DenseTensor* indices) { const auto& in_dims = x.dims(); if (axis < 0) axis += in_dims.size(); auto out_dims = output->dims(); const T* input_data = x.data(); T* output_data = dev_ctx.template Alloc(output); int64_t* indices_data = dev_ctx.template Alloc(indices); if (axis == in_dims.size() - 1) { const int64_t& input_height = phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1)); const int64_t& input_width = in_dims[in_dims.size() - 1]; PADDLE_ENFORCE_EQ( SortKthvalue( dev_ctx, &x, input_width, input_height, k, output, indices), true, phi::errors::External("KthvalueOP: Error when use cub sorting")); return; } else { std::vector trans; for (int i = 0; i < axis; i++) { trans.emplace_back(i); } trans.emplace_back(in_dims.size() - 1); for (int i = axis + 1; i < in_dims.size() - 1; i++) { trans.emplace_back(i); } trans.emplace_back(axis); if (!keepdim) { std::vector tmp_out_shape; for (int i = 0; i < axis; i++) { tmp_out_shape.emplace_back(in_dims[i]); } tmp_out_shape.emplace_back(1); for (int i = axis + 1; i < in_dims.size(); i++) { tmp_out_shape.emplace_back(in_dims[i]); } DDim tmp_out_dims = phi::make_ddim(tmp_out_shape); output->Resize(tmp_out_dims); indices->Resize(tmp_out_dims); } DDim trans_dims(in_dims); DDim trans_out_dims(in_dims); for (int i = 0; i < trans.size(); i++) { trans_dims[i] = in_dims[trans[i]]; trans_out_dims[i] = in_dims[trans[i]]; } trans_out_dims[in_dims.size() - 1] = 1; DenseTensor trans_input; trans_input.mutable_data(trans_dims, dev_ctx.GetPlace()); int ndims = trans.size(); funcs::TransCompute( ndims, dev_ctx, x, &trans_input, trans); DenseTensor trans_ind, trans_out; trans_ind.mutable_data(trans_out_dims, dev_ctx.GetPlace()); trans_out.mutable_data(trans_out_dims, dev_ctx.GetPlace()); const int64_t input_height = phi::product(phi::slice_ddim(trans_dims, 0, trans_dims.size() - 1)); const int64_t input_width = trans_dims[trans_dims.size() - 1]; PADDLE_ENFORCE_EQ( SortKthvalue(dev_ctx, &trans_input, input_width, input_height, k, &trans_out, &trans_ind), true, phi::errors::External("KthvalueOP: Error when use cub sorting")); funcs::TransCompute( ndims, dev_ctx, trans_ind, indices, trans); funcs::TransCompute( ndims, dev_ctx, trans_out, output, trans); if (!keepdim) { output->Resize(out_dims); indices->Resize(out_dims); } } } } // namespace phi PD_REGISTER_KERNEL(kthvalue, GPU, ALL_LAYOUT, phi::KthvalueKernel, float, double, int, int64_t) {}