# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid as fluid from paddle.fluid import Program, program_guard from op_test import OpTest class TestClipOp(OpTest): def setUp(self): self.max_relative_error = 0.006 self.initTestCase() input = np.random.random(self.shape).astype("float32") input[np.abs(input - self.min) < self.max_relative_error] = 0.5 input[np.abs(input - self.max) < self.max_relative_error] = 0.5 self.op_type = "clip" self.inputs = {'X': input, } self.attrs = {} self.attrs['min'] = self.min self.attrs['max'] = self.max self.outputs = { 'Out': np.clip(self.inputs['X'], self.attrs['min'], self.attrs['max']) } def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X'], 'Out') def initTestCase(self): self.shape = (10, 10) self.max = 0.7 self.min = 0.1 class TestCase1(TestClipOp): def initTestCase(self): self.shape = (8, 16, 8) self.max = 0.7 self.min = 0.0 class TestCase2(TestClipOp): def initTestCase(self): self.shape = (8, 16) self.max = 1.0 self.min = 0.0 class TestCase3(TestClipOp): def initTestCase(self): self.shape = (4, 8, 16) self.max = 0.7 self.min = 0.2 class TestClipOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): input_data = np.random.random((2, 4)).astype("float32") def test_Variable(): fluid.layers.clip(x=input_data, min=-1.0, max=1.0) self.assertRaises(TypeError, test_Variable) def test_dtype(): x2 = fluid.layers.data(name='x2', shape=[1], dtype='int32') fluid.layers.clip(x=x2, min=-1.0, max=1.0) self.assertRaises(TypeError, test_dtype) if __name__ == '__main__': unittest.main()