/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/data_transform.h" #include "paddle/fluid/framework/data_device_transform.h" #include "paddle/fluid/framework/data_layout_transform.h" #include "paddle/fluid/framework/data_type_transform.h" namespace paddle { namespace framework { class Variable; } // namespace framework } // namespace paddle #ifdef PADDLE_WITH_MKLDNN #include "paddle/fluid/platform/mkldnn_helper.h" #endif namespace paddle { namespace framework { static void PassTensorData(phi::DenseTensor *from, phi::DenseTensor *to) { to->ShareDataWith(*from); *from = phi::DenseTensor(); } void TransformData(const phi::KernelKey &expected_kernel_type, const phi::KernelKey &kernel_type_for_var, const phi::DenseTensor &input_tensor, phi::DenseTensor *output_tensor, const phi::Place &place) { bool transformed = false; phi::DenseTensor in; in.ShareDataWith(input_tensor); phi::DenseTensor out; const DataLayout lin = kernel_type_for_var.layout(); const DataLayout lout = expected_kernel_type.layout(); // do layout transform if (NeedTransformLayout(lout, lin)) { #ifdef PADDLE_WITH_MKLDNN if (lin == DataLayout::ONEDNN || lout == DataLayout::ONEDNN) { PADDLE_ENFORCE_EQ( !(lin == DataLayout::ONEDNN && lout == DataLayout::ONEDNN), true, platform::errors::PreconditionNotMet( "No layout transform needed between two oneDNN OPKernels.")); if (lin != DataLayout::ONEDNN && lout == DataLayout::ONEDNN) { // Case1 - transform from Non-ONEDNN OPKernel to ONEDNN OPKernel // Just set layout/format. No real transform occur auto out_format = phi::funcs::OneDNNFormatForSize( in.dims().size(), phi::funcs::ToOneDNNFormat(lin)); out.ShareDataWith(input_tensor); // For NHWC data we need reshape of tensors as MKL-DNN // is expecting NHWC dims description order if (lin == DataLayout::kNHWC || lin == DataLayout::kNDHWC) { phi::funcs::MatchShapeToLayout(&out, lin, lout); // We register only NHWC assuming that model is consistent e.g. either // NHWC or NCHW phi::OneDNNContext::tls().set_cur_paddle_data_layout(lin); } dnnl::memory::desc out_mem_desc( vectorize(out.dims()), phi::funcs::ToOneDNNDataType(in.dtype()), out_format); out.set_mem_desc(out_mem_desc); } else { // Case2 - transfrom from ONEDNN OPKernel to Non-ONEDNN OPKernel // Do transform via ONEDNN lib PADDLE_ENFORCE(lin == DataLayout::ONEDNN && lout != DataLayout::ONEDNN, platform::errors::InvalidArgument( "TransDataLayoutFromOneDNN only supports " "transform from ONEDNN to non-ONEDNN")); phi::funcs::TransDataLayoutFromOneDNN( lin, phi::OneDNNContext::tls().get_cur_paddle_data_layout(), in, &out, place); } } else { // Case3 - transfrom between Non-ONEDNN OPKernels TransDataLayout( kernel_type_for_var, expected_kernel_type, in, &out, place); } #else // Case3 - transfrom between Non-ONEDNN OPKernels TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out, place); #endif transformed = true; PassTensorData(&out, &in); } // do data type transform if (NeedTransformDataType(expected_kernel_type, kernel_type_for_var)) { TransDataType(kernel_type_for_var, expected_kernel_type, in, &out); transformed = true; PassTensorData(&out, &in); } // do device transform if (kernel_type_for_var.backend() != phi::Backend::ALL_BACKEND && !platform::is_same_place(in.place(), place)) { TransDataDevice(in, place, &out); transformed = true; PassTensorData(&out, &in); } PADDLE_ENFORCE_EQ( transformed, true, platform::errors::PreconditionNotMet( "No transform is applied for the data needs to be transformed.")); // get output data output_tensor->ShareDataWith(in); } void SetTensorToVariable(const Variable &in_var, const phi::DenseTensor &tensor, Variable *out_var) { if (in_var.IsType()) { auto &in_lod_tensor = in_var.Get(); auto *tran_lod_tensor = out_var->GetMutable(); tran_lod_tensor->set_lod(in_lod_tensor.lod()); tran_lod_tensor->set_layout(in_lod_tensor.layout()); #ifdef PADDLE_WITH_MKLDNN tran_lod_tensor->set_mem_desc(in_lod_tensor.mem_desc()); #endif tran_lod_tensor->ShareDataWith(tensor); } else if (in_var.IsType()) { auto &in_selected_rows = in_var.Get(); auto *trans_selected_rows = out_var->GetMutable(); trans_selected_rows->set_height(in_selected_rows.height()); trans_selected_rows->set_rows(in_selected_rows.rows()); trans_selected_rows->mutable_value()->ShareDataWith(tensor); } else { PADDLE_THROW(platform::errors::Unavailable( "Unsupported variable type, only supports phi::DenseTensor or " "SelectedRows, " "but the input variable type is %s.", ToTypeName(in_var.Type()))); } } phi::GetKernelTypeForVarContext BuildGetKernelTypeForVarContext( const phi::KernelKey &kernel_key, const AttributeMap &fluid_attrs, phi::AttributeMap *phi_attrs, bool has_infer_varkernel_fn) { // According to "GetKernelTypeForVar" in some ops those have MKLDNN codes, // the only "string" member, such as "data_layout" 、"data_format" of // AttibuteMap is useful. In the future the other args maybe used. Because the // "phi" module should not depend on the "fluid", transform // "framework::AttributeMap" to "phi::AttributeMap". if (has_infer_varkernel_fn) { for (auto &attr : fluid_attrs) { switch (attr.second.index()) { case 3: // string type in framwork::Attribute (*phi_attrs)[attr.first] = PADDLE_GET_CONST(std::string, attr.second); break; default: VLOG(6) << "GetKernelTypeForVarContext currently only use " "std::string. You add other type if need."; break; } } } return phi::GetKernelTypeForVarContext(&kernel_key, phi_attrs); } } // namespace framework } // namespace paddle