# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle import paddle.nn as nn from paddle.nn import Conv2D, BatchNorm, Linear, Dropout from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D from paddle.nn.initializer import Uniform from paddle.fluid.param_attr import ParamAttr from paddle.utils.download import get_weights_path_from_url __all__ = [] model_urls = { 'densenet121': ('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams', 'db1b239ed80a905290fd8b01d3af08e4'), 'densenet161': ('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams', '62158869cb315098bd25ddbfd308a853'), 'densenet169': ('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams', '82cc7c635c3f19098c748850efb2d796'), 'densenet201': ('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams', '16ca29565a7712329cf9e36e02caaf58'), 'densenet264': ('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams', '3270ce516b85370bba88cfdd9f60bff4'), } class BNACConvLayer(nn.Layer): def __init__(self, num_channels, num_filters, filter_size, stride=1, pad=0, groups=1, act="relu"): super(BNACConvLayer, self).__init__() self._batch_norm = BatchNorm(num_channels, act=act) self._conv = Conv2D(in_channels=num_channels, out_channels=num_filters, kernel_size=filter_size, stride=stride, padding=pad, groups=groups, weight_attr=ParamAttr(), bias_attr=False) def forward(self, input): y = self._batch_norm(input) y = self._conv(y) return y class DenseLayer(nn.Layer): def __init__(self, num_channels, growth_rate, bn_size, dropout): super(DenseLayer, self).__init__() self.dropout = dropout self.bn_ac_func1 = BNACConvLayer(num_channels=num_channels, num_filters=bn_size * growth_rate, filter_size=1, pad=0, stride=1) self.bn_ac_func2 = BNACConvLayer(num_channels=bn_size * growth_rate, num_filters=growth_rate, filter_size=3, pad=1, stride=1) if dropout: self.dropout_func = Dropout(p=dropout, mode="downscale_in_infer") def forward(self, input): conv = self.bn_ac_func1(input) conv = self.bn_ac_func2(conv) if self.dropout: conv = self.dropout_func(conv) conv = paddle.concat([input, conv], axis=1) return conv class DenseBlock(nn.Layer): def __init__(self, num_channels, num_layers, bn_size, growth_rate, dropout, name=None): super(DenseBlock, self).__init__() self.dropout = dropout self.dense_layer_func = [] pre_channel = num_channels for layer in range(num_layers): self.dense_layer_func.append( self.add_sublayer( "{}_{}".format(name, layer + 1), DenseLayer(num_channels=pre_channel, growth_rate=growth_rate, bn_size=bn_size, dropout=dropout))) pre_channel = pre_channel + growth_rate def forward(self, input): conv = input for func in self.dense_layer_func: conv = func(conv) return conv class TransitionLayer(nn.Layer): def __init__(self, num_channels, num_output_features): super(TransitionLayer, self).__init__() self.conv_ac_func = BNACConvLayer(num_channels=num_channels, num_filters=num_output_features, filter_size=1, pad=0, stride=1) self.pool2d_avg = AvgPool2D(kernel_size=2, stride=2, padding=0) def forward(self, input): y = self.conv_ac_func(input) y = self.pool2d_avg(y) return y class ConvBNLayer(nn.Layer): def __init__(self, num_channels, num_filters, filter_size, stride=1, pad=0, groups=1, act="relu"): super(ConvBNLayer, self).__init__() self._conv = Conv2D(in_channels=num_channels, out_channels=num_filters, kernel_size=filter_size, stride=stride, padding=pad, groups=groups, weight_attr=ParamAttr(), bias_attr=False) self._batch_norm = BatchNorm(num_filters, act=act) def forward(self, input): y = self._conv(input) y = self._batch_norm(y) return y class DenseNet(nn.Layer): """DenseNet model from `"Densely Connected Convolutional Networks" `_ Args: layers (int): layers of densenet. Default: 121. bn_size (int): expansion of growth rate in the middle layer. Default: 4. dropout (float): dropout rate. Default: 0.. num_classes (int): output dim of last fc layer. Default: 1000. with_pool (bool): use pool before the last fc layer or not. Default: True. Examples: .. code-block:: python import paddle from paddle.vision.models import DenseNet # build model densenet = DenseNet() x = paddle.rand([1, 3, 224, 224]) out = densenet(x) print(out.shape) """ def __init__(self, layers=121, bn_size=4, dropout=0., num_classes=1000, with_pool=True): super(DenseNet, self).__init__() self.num_classes = num_classes self.with_pool = with_pool supported_layers = [121, 161, 169, 201, 264] assert layers in supported_layers, \ "supported layers are {} but input layer is {}".format( supported_layers, layers) densenet_spec = { 121: (64, 32, [6, 12, 24, 16]), 161: (96, 48, [6, 12, 36, 24]), 169: (64, 32, [6, 12, 32, 32]), 201: (64, 32, [6, 12, 48, 32]), 264: (64, 32, [6, 12, 64, 48]) } num_init_features, growth_rate, block_config = densenet_spec[layers] self.conv1_func = ConvBNLayer(num_channels=3, num_filters=num_init_features, filter_size=7, stride=2, pad=3, act='relu') self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1) self.block_config = block_config self.dense_block_func_list = [] self.transition_func_list = [] pre_num_channels = num_init_features num_features = num_init_features for i, num_layers in enumerate(block_config): self.dense_block_func_list.append( self.add_sublayer( "db_conv_{}".format(i + 2), DenseBlock(num_channels=pre_num_channels, num_layers=num_layers, bn_size=bn_size, growth_rate=growth_rate, dropout=dropout, name='conv' + str(i + 2)))) num_features = num_features + num_layers * growth_rate pre_num_channels = num_features if i != len(block_config) - 1: self.transition_func_list.append( self.add_sublayer( "tr_conv{}_blk".format(i + 2), TransitionLayer(num_channels=pre_num_channels, num_output_features=num_features // 2))) pre_num_channels = num_features // 2 num_features = num_features // 2 self.batch_norm = BatchNorm(num_features, act="relu") if self.with_pool: self.pool2d_avg = AdaptiveAvgPool2D(1) if self.num_classes > 0: stdv = 1.0 / math.sqrt(num_features * 1.0) self.out = Linear( num_features, num_classes, weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr()) def forward(self, input): conv = self.conv1_func(input) conv = self.pool2d_max(conv) for i, num_layers in enumerate(self.block_config): conv = self.dense_block_func_list[i](conv) if i != len(self.block_config) - 1: conv = self.transition_func_list[i](conv) conv = self.batch_norm(conv) if self.with_pool: y = self.pool2d_avg(conv) if self.num_classes > 0: y = paddle.flatten(y, start_axis=1, stop_axis=-1) y = self.out(y) return y def _densenet(arch, layers, pretrained, **kwargs): model = DenseNet(layers=layers, **kwargs) if pretrained: assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format( arch) weight_path = get_weights_path_from_url(model_urls[arch][0], model_urls[arch][1]) param = paddle.load(weight_path) model.set_dict(param) return model def densenet121(pretrained=False, **kwargs): """DenseNet 121-layer model Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Examples: .. code-block:: python from paddle.vision.models import densenet121 # build model model = densenet121() # build model and load imagenet pretrained weight # model = densenet121(pretrained=True) """ return _densenet('densenet121', 121, pretrained, **kwargs) def densenet161(pretrained=False, **kwargs): """DenseNet 161-layer model Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Examples: .. code-block:: python from paddle.vision.models import densenet161 # build model model = densenet161() # build model and load imagenet pretrained weight # model = densenet161(pretrained=True) """ return _densenet('densenet161', 161, pretrained, **kwargs) def densenet169(pretrained=False, **kwargs): """DenseNet 169-layer model Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Examples: .. code-block:: python from paddle.vision.models import densenet169 # build model model = densenet169() # build model and load imagenet pretrained weight # model = densenet169(pretrained=True) """ return _densenet('densenet169', 169, pretrained, **kwargs) def densenet201(pretrained=False, **kwargs): """DenseNet 201-layer model Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Examples: .. code-block:: python from paddle.vision.models import densenet201 # build model model = densenet201() # build model and load imagenet pretrained weight # model = densenet201(pretrained=True) """ return _densenet('densenet201', 201, pretrained, **kwargs) def densenet264(pretrained=False, **kwargs): """DenseNet 264-layer model Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Examples: .. code-block:: python from paddle.vision.models import densenet264 # build model model = densenet264() # build model and load imagenet pretrained weight # model = densenet264(pretrained=True) """ return _densenet('densenet264', 264, pretrained, **kwargs)