# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle.fluid.core as core import paddle.fluid as fluid class TestCenterLossOp(OpTest): def setUp(self): self.op_type = "center_loss" self.dtype = np.float64 self.init_dtype_type() batch_size = 12 feet_dim = 10 cluster_num = 8 self.attrs = {} self.attrs['cluster_num'] = cluster_num self.attrs['lambda'] = 0.1 self.config() self.attrs['need_update'] = self.need_update labels = np.random.randint(cluster_num, size=batch_size, dtype='int64') feat = np.random.random((batch_size, feet_dim)).astype(np.float64) centers = np.random.random((cluster_num, feet_dim)).astype(np.float64) var_sum = np.zeros((cluster_num, feet_dim), dtype=np.float64) centers_select = centers[labels] output = feat - centers_select diff_square = np.square(output).reshape(batch_size, feet_dim) loss = 0.5 * np.sum(diff_square, axis=1).reshape(batch_size, 1) cout = [] for i in range(cluster_num): cout.append(0) for i in range(batch_size): cout[labels[i]] += 1 var_sum[labels[i]] += output[i] for i in range(cluster_num): var_sum[i] /= (1 + cout[i]) var_sum *= 0.1 result = centers + var_sum rate = np.array([0.1]).astype(np.float64) self.inputs = { 'X': feat, 'Label': labels, 'Centers': centers, 'CenterUpdateRate': rate } if self.need_update == True: self.outputs = { 'SampleCenterDiff': output, 'Loss': loss, 'CentersOut': result } else: self.outputs = { 'SampleCenterDiff': output, 'Loss': loss, 'CentersOut': centers } def config(self): self.need_update = True def init_dtype_type(self): pass def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Loss') class TestCenterLossOpNoUpdate(TestCenterLossOp): def config(self): self.need_update = False class BadInputTestCenterLoss(unittest.TestCase): def test_error(self): with fluid.program_guard(fluid.Program()): def test_bad_x(): data = [[1, 2, 3, 4], [5, 6, 7, 8]] label = fluid.layers.data(name='label', shape=[2, 1], dtype='int32') res = fluid.layers.center_loss( data, label, num_classes=1000, alpha=0.2, param_attr=fluid.initializer.Xavier(uniform=False), update_center=True) self.assertRaises(TypeError, test_bad_x) def test_bad_y(): data = fluid.layers.data(name='data', shape=[2, 32], dtype='float32') label = [[2], [3]] res = fluid.layers.center_loss( data, label, num_classes=1000, alpha=0.2, param_attr=fluid.initializer.Xavier(uniform=False), update_center=True) self.assertRaises(TypeError, test_bad_y) def test_bad_alpha(): data = fluid.layers.data(name='data2', shape=[2, 32], dtype='float32', append_batch_size=False) label = fluid.layers.data(name='label2', shape=[2, 1], dtype='int32', append_batch_size=False) alpha = fluid.layers.data(name='alpha', shape=[1], dtype='int64', append_batch_size=False) res = fluid.layers.center_loss( data, label, num_classes=1000, alpha=alpha, param_attr=fluid.initializer.Xavier(uniform=False), update_center=True) self.assertRaises(TypeError, test_bad_alpha) if __name__ == "__main__": unittest.main()