# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy import paddle.fluid as fluid import paddle.fluid.layers as layers import paddle.fluid.core as core from paddle.fluid.contrib.layers import basic_gru, basic_lstm from paddle.fluid.executor import Executor from paddle.fluid import framework from test_imperative_base import new_program_scope import numpy as np class TestBasicGRUApiName(unittest.TestCase): def setUp(self): self.name_set = set([ "test1_fw_w_0_gate", "test1_fw_w_0_candidate", "test1_fw_b_0_gate", "test1_fw_b_0_candidate", "test1_bw_w_0_gate", "test1_bw_w_0_candidate", "test1_bw_b_0_gate", "test1_bw_b_0_candidate" ]) def test_name(self): batch_size = 20 input_size = 128 hidden_size = 256 num_layers = 1 dropout = 0.5 bidirectional = True batch_first = False with new_program_scope(): input = layers.data(name="input", shape=[-1, batch_size, input_size], dtype='float32') pre_hidden = layers.data(name="pre_hidden", shape=[-1, hidden_size], dtype='float32') sequence_length = layers.data(name="sequence_length", shape=[-1], dtype='int32') rnn_out, last_hidden = basic_gru( input, pre_hidden, hidden_size, num_layers = num_layers, \ sequence_length = sequence_length, dropout_prob=dropout, bidirectional = bidirectional, \ batch_first = batch_first, param_attr=fluid.ParamAttr( name ="test1"), bias_attr=fluid.ParamAttr( name="test1"), name="basic_gru") var_list = fluid.io.get_program_parameter( fluid.default_main_program()) for var in var_list: self.assertTrue(var.name in self.name_set) class TestBasicLSTMApiName(unittest.TestCase): def setUp(self): self.name_set = set([ "test1_fw_w_0", "test1_fw_b_0", "test1_fw_w_1", "test1_fw_b_1", "test1_bw_w_0", "test1_bw_b_0", "test1_bw_w_1", "test1_bw_b_1" ]) def test_name(self): batch_size = 20 input_size = 128 hidden_size = 256 num_layers = 2 dropout = 0.5 bidirectional = True batch_first = False with new_program_scope(): input = layers.data(name="input", shape=[-1, batch_size, input_size], dtype='float32') pre_hidden = layers.data(name="pre_hidden", shape=[-1, hidden_size], dtype='float32') pre_cell = layers.data(name="pre_cell", shape=[-1, hidden_size], dtype='float32') sequence_length = layers.data(name="sequence_length", shape=[-1], dtype='int32') rnn_out, last_hidden, last_cell = basic_lstm( input, pre_hidden, pre_cell, \ hidden_size, num_layers = num_layers, \ sequence_length = sequence_length, dropout_prob=dropout, bidirectional = bidirectional, \ param_attr=fluid.ParamAttr( name ="test1"), bias_attr=fluid.ParamAttr( name = "test1"), \ batch_first = batch_first) var_list = fluid.io.get_program_parameter( fluid.default_main_program()) for var in var_list: self.assertTrue(var.name in self.name_set) if __name__ == '__main__': unittest.main()