# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except jin compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import six import numpy as np import warnings from collections import OrderedDict import itertools import warnings from contextlib import contextmanager import paddle from paddle import _C_ops from paddle.fluid import core from paddle.fluid import framework from paddle.fluid.dygraph import layers from paddle.fluid.dygraph import parallel_helper from paddle.fluid.dygraph import to_variable, no_grad from paddle.utils import deprecated from ..layers import collective from paddle.fluid.dygraph import base as imperative_base from paddle.fluid.framework import ParamBase, _in_legacy_dygraph, _non_static_mode, in_dygraph_mode __all__ = ["prepare_context", "ParallelEnv", "DataParallel"] ParallelStrategy = core.ParallelStrategy @deprecated(since="2.0.0", update_to="paddle.distributed.init_parallel_env") def prepare_context(strategy=None): ''' :api_attr: imperative ''' if strategy is None: strategy = ParallelStrategy() strategy.nranks = Env().nranks strategy.local_rank = Env().local_rank strategy.trainer_endpoints = Env().trainer_endpoints strategy.current_endpoint = Env().current_endpoint if strategy.nranks < 2: return assert framework._non_static_mode() is True, \ "dygraph.prepare_context should be used with dygraph mode." place = framework._current_expected_place() assert place is not None, \ "dygraph.prepare_context should be used in fluid.dygraph.guard(place) guard." if not parallel_helper._is_parallel_ctx_initialized(): if isinstance(place, core.CUDAPlace): parallel_helper._set_parallel_ctx( core.NCCLParallelContext(strategy, place)) elif isinstance(place, core.XPUPlace): parallel_helper._set_parallel_ctx( core.BKCLParallelContext(strategy, place)) elif isinstance(place, core.NPUPlace): parallel_helper._set_parallel_ctx( core.HCCLParallelContext(strategy, place)) else: # TODO(Yancey1989): add Gloo Parallel Context to support CPU parallel computation assert ("Only support CUDAPlace or XPUPlace or NPUPlace for now.") parallel_helper._init_parallel_ctx() return strategy class ParallelEnv(object): """ .. note:: This API is not recommended, if you need to get rank and world_size, it is recommended to use ``paddle.distributed.get_rank()`` and ``paddle.distributed.get_world_size()`` . This class is used to obtain the environment variables required for the parallel execution of ``paddle.nn.Layer`` in dynamic mode. The parallel execution in dynamic mode needs to be started using ``paddle.distributed.launch`` or ``paddle.distributed.spawn`` . Examples: .. code-block:: python import paddle import paddle.distributed as dist def train(): # 1. initialize parallel environment dist.init_parallel_env() # 2. get current ParallelEnv parallel_env = dist.ParallelEnv() print("rank: ", parallel_env.rank) print("world_size: ", parallel_env.world_size) # print result in process 1: # rank: 1 # world_size: 2 # print result in process 2: # rank: 2 # world_size: 2 if __name__ == '__main__': # 1. start by ``paddle.distributed.spawn`` (default) dist.spawn(train, nprocs=2) # 2. start by ``paddle.distributed.launch`` # train() """ def __init__(self): self._rank = int(os.getenv("PADDLE_TRAINER_ID", "0")) self._world_size = int(os.getenv("PADDLE_TRAINERS_NUM", "1")) # imperative only support one gpu or xpu if core.is_compiled_with_cuda(): selected_gpus = os.getenv("FLAGS_selected_gpus", "0").split(",") self._device_id = int(selected_gpus[0]) elif core.is_compiled_with_xpu(): selected_xpus = os.getenv("FLAGS_selected_xpus", "0").split(",") self._device_id = int(selected_xpus[0]) elif core.is_compiled_with_npu(): selected_npus = os.getenv("FLAGS_selected_npus", "0").split(",") self._device_id = int(selected_npus[0]) elif core.is_compiled_with_mlu(): selected_mlus = os.getenv("FLAGS_selected_mlus", "0").split(",") self._device_id = int(selected_mlus[0]) self._trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS", "").split(",") self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT", "") self._nrings = int(os.getenv("FLAGS_nccl_nrings", "1")) assert self._nrings > 0, \ "nccl_nrings must be an integer greater than 0." assert self._nrings < 9, \ "nccl_nrings should be less than 9, which is enough in most scenarios." @property def rank(self): """ Rank of current trainer. Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . The default value is 0. Examples: .. code-block:: python # execute this command in terminal: export PADDLE_TRAINER_ID=0 import paddle.distributed as dist env = dist.ParallelEnv() print("The rank is %d" % env.rank) # The rank is 0 """ return self._rank @property def world_size(self): """ The number of trainers (number of processes participating in current job). Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . The default value is 1. Examples: .. code-block:: python # execute this command in terminal: export PADDLE_TRAINERS_NUM=4 import paddle.distributed as dist env = dist.ParallelEnv() print("The world_size is %d" % env.world_size) # The world_size is 4 """ return self._world_size @property def device_id(self): """ The ID of selected GPU card for parallel training. Its value is equal to the value of the environment variable ``FLAGS_selected_gpus`` . The default value is 0. Examples: .. code-block:: python # execute this command in terminal: export FLAGS_selected_gpus=1 import paddle.distributed as dist env = dist.ParallelEnv() print("The device id are %d" % env.device_id) # The device id are 1 """ return self._device_id @property def current_endpoint(self): """ The endpoint of current trainer, it is in the form of (node IP + port). Its value is equal to the value of the environment variable ``PADDLE_CURRENT_ENDPOINT`` . The default value is "". Examples: .. code-block:: python # execute this command in terminal: export PADDLE_CURRENT_ENDPOINT=127.0.0.1:6170 import paddle.distributed as dist env = dist.ParallelEnv() print("The current endpoint are %s" % env.current_endpoint) # The current endpoint are 127.0.0.1:6170 """ return self._current_endpoint @property def trainer_endpoints(self): """ The endpoints of all trainer nodes in the task, which are used to broadcast the NCCL ID when NCCL2 is initialized. Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ENDPOINTS`` . The default value is "". Examples: .. code-block:: python # execute this command in terminal: export PADDLE_TRAINER_ENDPOINTS=127.0.0.1:6170,127.0.0.1:6171 import paddle.distributed as dist env = dist.ParallelEnv() print("The trainer endpoints are %s" % env.trainer_endpoints) # The trainer endpoints are ['127.0.0.1:6170', '127.0.0.1:6171'] """ return self._trainer_endpoints @property def nrings(self): """ Nrings of current trainer. Its value is equal to the value of the environment variable ``FLAGS_nccl_nrings`` . The default value is 1. Examples: .. code-block:: python # execute this command in terminal: export FLAGS_nccl_nrings=1 import paddle.distributed as dist env = dist.ParallelEnv() print("The nrings is %d" % env.nrings) # the number of ring is 1 """ return self._nrings # [aliases] Compatible with old method names local_rank = rank nranks = world_size dev_id = device_id # NOTE: [ Compatible ] Originally this class name is `Env`. The semantics of the old class names # are inaccurate and may confuse users, so replace it with `ParallelEnv`, but to be compatible # with the old examples, here still need to keep this name. Env = ParallelEnv def _build_default_parallel_strategy(): strategy = ParallelStrategy() strategy.nranks = ParallelEnv().nranks strategy.local_rank = ParallelEnv().local_rank strategy.trainer_endpoints = ParallelEnv().trainer_endpoints strategy.current_endpoint = ParallelEnv().current_endpoint return strategy def _coalesce_tensors(var_groups): from ..layers import nn coalesced_grads_and_grad_vars = [] for group_id, grad_vars in var_groups.items(): flattened_vars = [] g_var_shapes = [] for g_var in grad_vars: g_var_shapes.append(g_var.shape) flattened_vars.append( nn.reshape(x=g_var, shape=[np.prod(g_var.shape)])) coalesced_grad = nn.concat(flattened_vars) coalesced_grads_and_grad_vars.append( [coalesced_grad, grad_vars, g_var_shapes]) return coalesced_grads_and_grad_vars @framework.dygraph_only def _reshape_inplace(x, shape): x_shape = framework._varbase_creator(dtype=x.dtype) framework._dygraph_tracer().trace_op(type="reshape2", inputs={'X': x}, outputs={ 'Out': x, 'XShape': x_shape }, attrs={'shape': shape}) @framework.dygraph_only def _split_tensors(coalesced_grads_and_grad_vars): if _in_legacy_dygraph(): for coalesced_grad, origin_grad_vars, grad_shapes in coalesced_grads_and_grad_vars: grad_var_len = [np.prod(g_shape) for g_shape in grad_shapes] framework._dygraph_tracer().trace_op( type='split', inputs={'X': coalesced_grad}, outputs={'Out': origin_grad_vars}, attrs={ 'sections': grad_var_len, 'axis': 0 }) for g_var, g_shape in zip(origin_grad_vars, grad_shapes): _reshape_inplace(x=g_var, shape=g_shape) assert g_var.shape == g_shape elif in_dygraph_mode(): for coalesced_grad, origin_grad_vars, grad_shapes in coalesced_grads_and_grad_vars: grad_var_len = [np.prod(g_shape) for g_shape in grad_shapes] attrs = () attrs += ('sections', grad_var_len) attrs += ('axis', 0) _C_ops.split(coalesced_grad, origin_grad_vars, *attrs) for g_var, g_shape in zip(origin_grad_vars, grad_shapes): g_var.reshape_(shape=g_shape) assert g_var.shape == g_shape def scale_loss(loss): # TODO(liuyuhui) Currently only for xpu. Will be removed in the future. if not ParallelEnv().world_size > 1: return loss loss_scale = to_variable( np.array([ParallelEnv().world_size]).astype("float32")) loss_scale.stop_gradient = True scaled_loss = loss / loss_scale return scaled_loss @imperative_base.no_grad @framework.dygraph_only def build_groups(vars, group_size): group_idx = 0 memory_counter = 0 var_groups = OrderedDict() dtype = vars[0].dtype for var in vars: bytes = np.prod(var.shape) * core.size_of_dtype(var.dtype) if memory_counter < group_size and dtype == var.dtype: memory_counter += bytes else: memory_counter = bytes dtype = var.dtype group_idx += 1 var_groups.setdefault(group_idx, []).append(var) return _coalesce_tensors(var_groups) @imperative_base.no_grad @framework.dygraph_only def sync_params_buffers(model, comm_group=None, src_rank=0, is_model_parallel=False): model_vars = [] for _, param in model._obtain_parameters_buffers().items(): if not isinstance(param, (core.VarBase, core.eager.Tensor)): raise TypeError( "The data type of '%s' must be Varbase or eager.Tensor" % param.name) # is_distributed param not need to sync when in mp mode if isinstance(param, (ParamBase, core.eager.Tensor)): if is_model_parallel and param.is_distributed: continue # NOTE(shenliang03): Support situations that do not require synchronization parameters, # such as moe's expert parameters if getattr(param, "no_sync", False): continue if param.type == core.VarDesc.VarType.VOCAB: continue model_vars.append(param.detach()) if len(model_vars) == 0: return # group size is 128M coalesced_vars = build_groups(model_vars, 128 * 1024 * 1024) for coalesced_var, _, _ in coalesced_vars: paddle.distributed.broadcast(coalesced_var, src=src_rank, group=comm_group, use_calc_stream=True) for coalesced_var, origin_vars, var_shapes in coalesced_vars: var_len = [np.prod(v_shape) for v_shape in var_shapes] paddle.fluid.framework._dygraph_tracer().trace_op( type='split', inputs={'X': coalesced_var}, outputs={'Out': origin_vars}, attrs={ 'sections': var_len, 'axis': 0 }) class DataParallel(layers.Layer): """ Run the dygraph module with data parallelism. Currently, DataParallel class only supports to run the dynamic graph with multi-process. Now supports two ways to start training: 1. start by ``paddle.distributed.spawn`` method, for example: ``python demo.py`` (spawn need to be called in ``__main__`` method) 2. start by ``paddle.distributed.launch`` module, for example: ``python -m paddle.distributed.launch --gpus=0,1 demo.py`` . And the content of `demo.py` is the code of examples. Args: layers(Layer): The module that should be executed by data parallel. strategy(ParallelStrategy, optional): (deprecated) The strategy of data parallelism, contains environment configuration related to parallel execution. Default: None. comm_buffer_size(int, optional): It limits the memory size(MB) of one buffer parameters' gradient which is the input of communication calling(e.g NCCLAllReduce). Default: 25. last_comm_buffer_size(float, optional): It limits memory size(MB) of last buffer in communication calling. Making the last communication buffer size small is useful to improve performance. Default: 1. find_unused_parameters(bool, optional): Whether to traverse the entire backward graph from the all tensors in the return value of the wrapped model's forward function. For parameters not involved in loss calculation, their gradients will be marked as ready in advance to prepare reduce. Please note that all forward outputs derived from the wrapped model parameters must participate in the calculation of loss and subsequent gradient calculations. If not, serious error will occur. Note that setting the find_unused_parameters to True will affect computing performance. Therefore, if all parameters are sure to participate in the loss calculation and the autograd graph construction, please set it False. Default: False. Returns: Layer: The data paralleled module. Examples: .. code-block:: python :name: dp-example # required: distributed import paddle import paddle.nn as nn import paddle.optimizer as opt import paddle.distributed as dist class LinearNet(nn.Layer): def __init__(self): super(LinearNet, self).__init__() self._linear1 = nn.Linear(10, 10) self._linear2 = nn.Linear(10, 1) def forward(self, x): return self._linear2(self._linear1(x)) def train(): # 1. initialize parallel environment dist.init_parallel_env() # 2. create data parallel layer & optimizer layer = LinearNet() dp_layer = paddle.DataParallel(layer) loss_fn = nn.MSELoss() adam = opt.Adam( learning_rate=0.001, parameters=dp_layer.parameters()) # 3. run layer inputs = paddle.randn([10, 10], 'float32') outputs = dp_layer(inputs) labels = paddle.randn([10, 1], 'float32') loss = loss_fn(outputs, labels) loss.backward() adam.step() adam.clear_grad() if __name__ == '__main__': # 1. start by ``paddle.distributed.spawn`` (default) dist.spawn(train, nprocs=2) # 2. start by ``paddle.distributed.launch`` # train() .. note:: ``PyLayer`` is not supported in DataParallel. To solve problems of this kind, it's recommended to skip gradient synchronization among multiple cards by 'no_sync', and manually implement 'all_reduce' before model optimization. There is an example showing specific implemetation processing. Examples: .. code-block:: python :name: dp-pylayer-example # required: distributed import numpy import paddle import paddle.distributed as dist from paddle.autograd import PyLayer from paddle.distributed.fleet.utils.hybrid_parallel_util import fused_allreduce_gradients class cus_tanh(PyLayer): @staticmethod def forward(ctx, x): y = paddle.tanh(x) ctx.save_for_backward(y) return y @staticmethod def backward(ctx, dy): y, = ctx.saved_tensor() grad = dy * (1 - paddle.square(y)) return grad class SimpleNet(paddle.nn.Layer): def __init__(self): super(SimpleNet, self).__init__() self.linear = paddle.nn.Linear(2, 2) def forward(self, inputs): inputs = cus_tanh.apply(inputs) return self.linear(inputs) if __name__ == '__main__': dist.init_parallel_env() model = SimpleNet() model = paddle.DataParallel(model) opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters()) for step in range(10): x_data = numpy.random.randn(2, 2).astype(numpy.float32) x = paddle.to_tensor(x_data) x.stop_gradient = False # step 1 : skip gradient synchronization by 'no_sync' with model.no_sync(): y_pred = model(x) loss = y_pred.mean() loss.backward() # step 2 : fuse + allreduce manually before optimization fused_allreduce_gradients(list(model.parameters()), None) opt.step() opt.clear_grad() """ def __init__(self, layers, strategy=None, comm_buffer_size=25, last_comm_buffer_size=1, find_unused_parameters=False, group=None): super(DataParallel, self).__init__(layers.full_name() + "_data_parallel") assert _non_static_mode(), \ "It's not supported to construct DataParallel in static mode." self._layers = layers self.find_unused_parameters = find_unused_parameters self.grad_need_sync = True self.group = group self.var_dtype = core.eager.Tensor if in_dygraph_mode( ) else core.VarBase # NOTE(chenweihang): The ParallelStrategy here is not strictly a strategy. # It just stores some environment variables, which can be constructed by # ParallelEnv. Here it is set as an optional argument. # This parameter is not removed because of compatibility with 1.x writing. if strategy is not None: self._strategy = strategy else: self._strategy = _build_default_parallel_strategy() if self._strategy.nranks > 1: # check the environment assert parallel_helper.__parallel_ctx__clz__ is not None, \ "ParallelContext must be initialized before. You should use init_parallel_env() before" \ "constructing the DataParallel." if in_dygraph_mode(): self.group = paddle.distributed.collective._get_default_group( ) if self.group is None else self.group assert isinstance(self.group, paddle.distributed.collective.Group), \ "ProcessGroup must be an instance of Group in DataParallel." # sync buffer and params # TODO(liuyuhui) Currently not support xpu. xpu is # still broadcasting parameters when calling layer if not paddle.is_compiled_with_xpu(): sync_params_buffers(self._layers) self.comm_buffer_size = int(comm_buffer_size * 1024 * 1024) # NOTE(shenliang03): We can set environment variables to control # the size of the group, Default: 1MB. The role of this small group is: # when the last group allreduce, the overlap cannot work. Making the # the last group small is useful to improve performance. self.last_comm_buffer_size = int(last_comm_buffer_size * 1024 * 1024) self.init_reducer() else: warnings.warn("The program will return to single-card operation. " "Please check 1, whether you use spawn or fleetrun " "to start the program. 2, Whether it is a multi-card " "program. 3, Is the current environment multi-card.") def init_reducer(self): layers_param = [] params_set = set() for sublayer in self.sublayers(): for _, param in sublayer.named_parameters(include_sublayers=False): if param is None or param in params_set: continue params_set.add(param) if not isinstance(param, self.var_dtype): raise TypeError("The data type of '%s' must be '%s'" % (param.name, self.var_dtype)) if param.trainable: layers_param.append((sublayer, param)) trainable_parameters = [param for _, param in layers_param] assert len(trainable_parameters) > 0, \ "This model does not have any parameters to train, and " \ "does not need to use DataParallel" # NOTE(shenliang03): Here we can only use the attributes to judge whether # parameter is sparse(or SelectedRows). The reason is that the sparse message # can't be obtained when bp hasn't happened yet. So if layer supports sparse parameter, # we should add the layer here like "paddle.nn.layer.common.Embedding". def check_layer_sparse(sublayer): if isinstance(sublayer, paddle.nn.layer.common.Embedding): return sublayer._sparse # NOTE(shenliang03):This is for compatibility. If paddle.fluid.dygraph.Embedding # is removed in the future, the check will also be removed here. if isinstance(sublayer, paddle.fluid.dygraph.Embedding): return sublayer._is_sparse return False is_sparse_gradient = [ check_layer_sparse(sublayer) for sublayer, _ in layers_param ] if in_dygraph_mode(): self.group_indices = core.eager_assign_group_by_size( trainable_parameters, is_sparse_gradient, [self.last_comm_buffer_size, self.comm_buffer_size]) self._reducer = core.EagerReducer( trainable_parameters, list(reversed(self.group_indices)), is_sparse_gradient, self.group.process_group, [self.last_comm_buffer_size, self.comm_buffer_size], self.find_unused_parameters) elif _in_legacy_dygraph(): self.group_indices = core.assign_group_by_size( trainable_parameters, is_sparse_gradient, [self.last_comm_buffer_size, self.comm_buffer_size]) self._reducer = core.Reducer( trainable_parameters, list(reversed(self.group_indices)), is_sparse_gradient, parallel_helper.__parallel_ctx__clz__, [self.last_comm_buffer_size, self.comm_buffer_size], self.find_unused_parameters) def _find_varbase(self, obj): var_type = core.eager.Tensor if in_dygraph_mode() else core.VarBase if isinstance(obj, var_type): return [obj] if isinstance(obj, (list, tuple)): return itertools.chain(*map(self._find_varbase, obj)) if isinstance(obj, dict): return itertools.chain(*map(self._find_varbase, obj.values())) return [] @contextmanager def no_sync(self): """ A context manager to stop gradient synchronization. Within no_sync(), gradients of parameters will only be accumulated on model and not synchronized util the first forward-backward out of this context. Examples: .. code-block:: python # required: distributed import paddle import paddle.nn as nn import paddle.distributed as dist class SimpleNet(nn.Layer): def __init__(self): super(SimpleNet, self).__init__() self._linear = nn.Linear(10, 1) def forward(self, x): return self._linear(x) dist.init_parallel_env() model = SimpleNet() dp_model = paddle.DataParallel(model) inputs_1 = paddle.randn([10, 10], 'float32') inputs_2 = paddle.ones([10, 10], 'float32') with dp_model.no_sync(): # gradients will not be synchronized dp_model(inputs_1).backward() # synchronization happens here dp_model(inputs_2).backward() """ tmp_grad_need_sync = self.grad_need_sync self.grad_need_sync = False try: yield finally: self.grad_need_sync = tmp_grad_need_sync def forward(self, *inputs, **kwargs): outputs = self._layers(*inputs, **kwargs) if self._strategy.nranks > 1 and framework._dygraph_tracer( )._has_grad and self.grad_need_sync: self._reducer.prepare_for_backward(list( self._find_varbase(outputs))) return outputs @deprecated(since="2.0.0", reason="This method does not need to be called anymore.") def scale_loss(self, loss): """ Deprecated method, now ``scale_loss`` is an empty method, keep this method just for compatibility. """ return loss @deprecated(since="2.0.0", reason="This method does not need to be called anymore.") def apply_collective_grads(self): """ Deprecated method, now ``apply_collective_grads`` is an empty method, keep this method just for compatibility. """ return def state_dict(self, destination=None, include_sublayers=True, structured_name_prefix=""): ''' Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict Parameters: destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True Retruns: dict: a dict contains all the parameters and persistable buffers. Examples: .. code-block:: python import paddle import paddle.distributed as dist dist.init_parallel_env() emb = fluid.dygraph.Embedding([10, 10]) emb = fluid.dygraph.DataParallel(emb) state_dict = emb.state_dict() paddle.save(state_dict, "paddle_dy.pdparams") ''' return self._layers.state_dict( destination=destination, include_sublayers=include_sublayers, structured_name_prefix=structured_name_prefix) @framework.deprecate_stat_dict def set_state_dict(self, state_dict, use_structured_name=True): ''' Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict Parameters: state_dict(dict) : Dict contains all the parameters and persistable buffers. use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key. Default: True Returns: None Examples: .. code-block:: python import paddle import paddle.distributed as dist dist.init_parallel_env() emb = paddle.nn.Embedding(10, 10) emb = fluid.dygraph.DataParallel(emb) state_dict = emb.state_dict() paddle.save(state_dict, "paddle_dy.pdparams") para_state_dict = paddle.load("paddle_dy.pdparams") emb.set_state_dict(para_state_dict) ''' self._layers.set_state_dict(state_dict, use_structured_name=use_structured_name) # [aliases] Compatible with old method names set_dict = set_state_dict load_dict = set_state_dict