# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = [] from paddle import _C_ops, _legacy_C_ops from paddle.fluid.framework import dygraph_only from paddle import in_dynamic_mode from paddle.fluid.layer_helper import LayerHelper def relu(x, name=None): """ sparse relu activation, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: out = max(x, 0) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2., 0., 1.]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.nn.functional.relu(sparse_x) # [0., 0., 1.] """ if in_dynamic_mode(): return _C_ops.sparse_relu(x) else: op_type = 'sparse_relu' helper = LayerHelper(op_type) out = helper.create_sparse_variable_for_type_inference(x.dtype) helper.append_op(type=op_type, inputs={'x': x}, outputs={'out': out}, attrs={}) return out @dygraph_only def softmax(x, axis=-1, name=None): """ sparse softmax activation, requiring x to be a SparseCooTensor or SparseCsrTensor. Note: Only support axis=-1 for SparseCsrTensor, which is faster when read data by row (axis=-1). From the point of view of dense matrix, for each row :math:`i` and each column :math:`j` in the matrix, we have: .. math:: softmax_ij = \frac{\exp(x_ij - max_j(x_ij))}{\sum_j(exp(x_ij - max_j(x_ij))} Parameters: x (Tensor): The input tensor. It can be SparseCooTensor/SparseCsrTensor. The data type can be float32 or float64. axis (int, optional): The axis along which to perform softmax calculations. Only support -1 for SparseCsrTensor. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: SparseCoo or SparseCsr, whose layout is the same with `x` . Examples: .. code-block:: python import paddle import numpy as np paddle.seed(100) mask = np.random.rand(3, 4) < 0.5 np_x = np.random.rand(3, 4) * mask # [[0. 0. 0.96823406 0.19722934] # [0.94373937 0. 0.02060066 0.71456372] # [0. 0. 0. 0.98275049]] csr = paddle.to_tensor(np_x).to_sparse_csr() # Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True, # crows=[0, 2, 5, 6], # cols=[2, 3, 0, 2, 3, 3], # values=[0.96823406, 0.19722934, 0.94373937, 0.02060066, 0.71456372, # 0.98275049]) out = paddle.incubate.sparse.nn.functional.softmax(csr) # Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True, # crows=[0, 2, 5, 6], # cols=[2, 3, 0, 2, 3, 3], # values=[0.68373820, 0.31626180, 0.45610887, 0.18119845, 0.36269269, # 1. ]) """ return _C_ops.sparse_softmax(x, axis) @dygraph_only def relu6(x, name=None): """ sparse relu6 activation, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: relu6(x) = min(max(0, x), 6) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2., 0., 8.]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.nn.functional.relu6(sparse_x) """ return _C_ops.sparse_relu6(x, 6.0) @dygraph_only def leaky_relu(x, negative_slope=0.01, name=None): """ sparse leaky_relu activation, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: leaky\_relu(x)= \left\{ \begin{array}{rcl} x, & & if \ x >= 0 \\ negative\_slope * x, & & otherwise \\ \end{array} \right. Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. negative_slope (float, optional): Slope of the activation function at :math:`x < 0` . Default is 0.01. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2., 0., 5.]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.incubate.sparse.nn.functional.leaky_relu(sparse_x, 0.5) """ return _C_ops.sparse_leaky_relu(x, negative_slope)