// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/dropout_grad_kernel.h" #include #include #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void DropoutGradRawKernel(const Context& dev_ctx, const DenseTensor& mask, const DenseTensor& out_grad, const Scalar& p, bool is_test, const std::string& mode, DenseTensor* x_grad) { using XPUType = typename XPUTypeTrait::Type; PADDLE_ENFORCE_EQ(!is_test, true, phi::errors::InvalidArgument( "GradOp is only callable when is_test is false")); auto* grad_x = x_grad; auto* grad_y = &out_grad; dev_ctx.template Alloc(grad_x); float dropout_prob = p.to(); const T* mask_data = mask.data(); if (mode != "upscale_in_train") { int r = xpu::mul(dev_ctx.x_context(), reinterpret_cast(grad_y->data()), reinterpret_cast(mask_data), reinterpret_cast(grad_x->data()), grad_y->numel()); PADDLE_ENFORCE_XDNN_SUCCESS(r, "mul"); return; } auto version = phi::backends::xpu::get_xpu_version(dev_ctx.GetPlace().GetDeviceId()); if (version == phi::backends::xpu::XPUVersion::XPU1) { xpu::ctx_guard RAII_GUARD(dev_ctx.x_context()); XPUType* mask_new = RAII_GUARD.alloc_l3_or_gm(mask.numel()); float scale = (dropout_prob == 1.0f) ? (1.0f) : (1.0f / (1.0f - dropout_prob)); int r = xpu::scale(dev_ctx.x_context(), reinterpret_cast(mask.data()), reinterpret_cast(mask_new), mask.numel(), false, scale, 0.0f); PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale"); r = xpu::mul(dev_ctx.x_context(), reinterpret_cast(grad_y->data()), reinterpret_cast(mask_new), reinterpret_cast(grad_x->data()), grad_y->numel()); PADDLE_ENFORCE_XDNN_SUCCESS(r, "mul"); } else { int r = xpu::dropout_grad(dev_ctx.x_context(), reinterpret_cast(mask.data()), reinterpret_cast(grad_y->data()), reinterpret_cast(grad_x->data()), dropout_prob, grad_y->numel()); PADDLE_ENFORCE_XDNN_SUCCESS(r, "dropout_grad"); } } } // namespace phi PD_REGISTER_KERNEL(dropout_grad, XPU, ALL_LAYOUT, phi::DropoutGradRawKernel, float, phi::dtype::float16) {}