# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import sys import six import random import os import re from .graphviz import GraphPreviewGenerator from .proto import framework_pb2 from google.protobuf import text_format from . import unique_name from .framework import Program, default_main_program, Variable from . import core from . import io from .layer_helper import LayerHelper _vartype2str_ = [ "UNK", "LoDTensor", "SelectedRows", "FeedMinibatch", "FetchList", "StepScopes", "LodRankTable", "LoDTensorArray", "PlaceList", ] _dtype2str_ = [ "bool", "int16", "int32", "int64", "float16", "float32", "float64", ] def repr_data_type(type): return _dtype2str_[type] def repr_tensor(proto): return "tensor(type={}, shape={})".format(_dtype2str_[int(proto.data_type)], str(proto.dims)) reprtpl = "{ttype} {name} ({reprs})" def repr_lodtensor(proto): if proto.type.type != framework_pb2.VarType.LOD_TENSOR: return level = proto.type.lod_tensor.lod_level reprs = repr_tensor(proto.type.lod_tensor.tensor) return reprtpl.format( ttype="LoDTensor" if level > 0 else "Tensor", name=proto.name, reprs="level=%d, %s" % (level, reprs) if level > 0 else reprs) def repr_selected_rows(proto): if proto.type.type != framework_pb2.VarType.SELECTED_ROWS: return return reprtpl.format( ttype="SelectedRows", name=proto.name, reprs=repr_tensor(proto.type.selected_rows)) def repr_tensor_array(proto): if proto.type.type != framework_pb2.VarType.LOD_TENSOR_ARRAY: return return reprtpl.format( ttype="TensorArray", name=proto.name, reprs="level=%d, %s" % (proto.type.tensor_array.lod_level, repr_tensor(proto.type.lod_tensor.tensor))) type_handlers = [ repr_lodtensor, repr_selected_rows, repr_tensor_array, ] def repr_var(vardesc): for handler in type_handlers: res = handler(vardesc) if res: return res def pprint_program_codes(program_desc): reprs = [] for block_idx in range(program_desc.desc.num_blocks()): block_desc = program_desc.block(block_idx) block_repr = pprint_block_codes(block_desc) reprs.append(block_repr) return '\n'.join(reprs) def pprint_block_codes(block_desc, show_backward=False): def is_op_backward(op_desc): if op_desc.type.endswith('_grad'): return True def is_var_backward(var): if "@GRAD" in var.parameter: return True for arg in var.arguments: if "@GRAD" in arg: return True for var in op_desc.inputs: if is_var_backward(var): return True for var in op_desc.outputs: if is_var_backward(var): return True return False def is_var_backward(var_desc): return "@GRAD" in var_desc.name if type(block_desc) is not framework_pb2.BlockDesc: block_desc = framework_pb2.BlockDesc.FromString( block_desc.desc.serialize_to_string()) var_reprs = [] op_reprs = [] for var in block_desc.vars: if not show_backward and is_var_backward(var): continue var_reprs.append(repr_var(var)) for op in block_desc.ops: if not show_backward and is_op_backward(op): continue op_reprs.append(repr_op(op)) tpl = "// block-{idx} parent-{pidx}\n// variables\n{vars}\n\n// operators\n{ops}\n" return tpl.format( idx=block_desc.idx, pidx=block_desc.parent_idx, vars='\n'.join(var_reprs), ops='\n'.join(op_reprs), ) def repr_attr(desc): tpl = "{key}={value}" valgetter = [ lambda attr: attr.i, lambda attr: attr.f, lambda attr: attr.s, lambda attr: attr.ints, lambda attr: attr.floats, lambda attr: attr.strings, lambda attr: attr.b, lambda attr: attr.bools, lambda attr: attr.block_idx, lambda attr: attr.l, ] key = desc.name value = valgetter[desc.type](desc) if key == "dtype": value = repr_data_type(value) return tpl.format(key=key, value=str(value)), (key, value) def _repr_op_fill_constant(optype, inputs, outputs, attrs): if optype == "fill_constant": return "{output} = {data} [shape={shape}]".format( output=','.join(outputs), data=attrs['value'], shape=str(attrs['shape'])) op_repr_handlers = [_repr_op_fill_constant, ] def repr_op(opdesc): optype = None attrs = [] attr_dict = {} is_target = None inputs = [] outputs = [] tpl = "{outputs} = {optype}({inputs}{is_target}) [{attrs}]" args2value = lambda args: args[0] if len(args) == 1 else str(list(args)) for var in opdesc.inputs: key = var.parameter value = args2value(var.arguments) inputs.append("%s=%s" % (key, value)) for var in opdesc.outputs: value = args2value(var.arguments) outputs.append(value) for attr in opdesc.attrs: attr_repr, attr_pair = repr_attr(attr) attrs.append(attr_repr) attr_dict[attr_pair[0]] = attr_pair[1] is_target = opdesc.is_target for handler in op_repr_handlers: res = handler(opdesc.type, inputs, outputs, attr_dict) if res: return res return tpl.format( outputs=', '.join(outputs), optype=opdesc.type, inputs=', '.join(inputs), attrs="{%s}" % ','.join(attrs), is_target=", is_target" if is_target else "") def draw_block_graphviz(block, highlights=None, path="./temp.dot"): ''' Generate a debug graph for block. Args: block(Block): a block. ''' graph = GraphPreviewGenerator("some graph") # collect parameters and args protostr = block.desc.serialize_to_string() desc = framework_pb2.BlockDesc.FromString(six.binary_type(protostr)) def need_highlight(name): if highlights is None: return False for pattern in highlights: assert type(pattern) is str if re.match(pattern, name): return True return False # draw parameters and args vars = {} for var in desc.vars: # TODO(gongwb): format the var.type # create var if var.persistable: varn = graph.add_param( var.name, str(var.type).replace("\n", "
", 1), highlight=need_highlight(var.name)) else: varn = graph.add_arg(var.name, highlight=need_highlight(var.name)) vars[var.name] = varn def add_op_link_var(op, var, op2var=False): for arg in var.arguments: if arg not in vars: # add missing variables as argument vars[arg] = graph.add_arg(arg, highlight=need_highlight(arg)) varn = vars[arg] highlight = need_highlight(op.description) or need_highlight( varn.description) if op2var: graph.add_edge(op, varn, highlight=highlight) else: graph.add_edge(varn, op, highlight=highlight) for op in desc.ops: opn = graph.add_op(op.type, highlight=need_highlight(op.type)) for var in op.inputs: add_op_link_var(opn, var, False) for var in op.outputs: add_op_link_var(opn, var, True) graph(path, show=False) def prepare_fast_nan_inf_debug(_program): """ Given a program to run, insert a (reduce) sum op for every var in that program. Instead of checking all vars originally defined in the program, only those inserted ops will be checked in the c++ end, to detect if it contains NAN or INF. Thereforce, the speed of nan/inf checking could be improved. Please set ``FLAGS_fast_check_nan_inf" to open the fast nan/inf feature. """ helper = LayerHelper('reduce_sum', **locals()) if _program is None: _program = default_main_program() for _block in _program.blocks: # fetch vars in the current block _vars_in_prog = [] for _var_name in _block.vars: _vars_in_prog.append((_var_name, _block.vars[_var_name])) # append sum_op in the current block for _var_name, _var in _vars_in_prog: try: if _var.dtype == -1: continue ## create a var for holding sum output _output_var = _block.create_var( name=unique_name.generate("debug_var_" + _var_name), dtype=_var.dtype, type=core.VarDesc.VarType.LOD_TENSOR, persistable=False, stop_gradient=True) ## create a sum op, input each existing var in the block _block.append_op( type='sum', outputs={'Out': _output_var}, inputs={'X': [_var]}) except Exception as e: pass def run_fast_nan_inf_debug(executor, program=None, feed=None, fetch_list=None, feed_var_name='feed', fetch_var_name='fetch', scope=None, return_numpy=True, use_program_cache=False, dump_core=True): """ Run a program by the given executor. Catch the exception of NAN and INF, and save persistables into the dumped core. """ assert (executor is not None) try: output = executor.run(program=program, feed=feed, fetch_list=fetch_list, feed_var_name=feed_var_name, fetch_var_name=fetch_var_name, scope=scope, return_numpy=return_numpy, use_program_cache=use_program_cache) return output except Exception as e: print("catch an exception:") print(e) core_filename = "core" + str(int(random.random() * 10000)) + ".pdckpt" io.save_persistables( executor, "./", main_program=program, filename=core_filename) print("dumping a core into ./%s" % core_filename)