// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/pten/core/ddim.h" #include "paddle/pten/core/dense_tensor.h" #include "paddle/fluid/operators/eigen/eigen_function.h" #include "paddle/pten/kernels/funcs/eigen/common.h" namespace pten { namespace math { template struct TransposeNormal { // for dims >= 7 situation void operator()(const DeviceContext& dev_ctx, const pten::DenseTensor& in, pten::DenseTensor* out, const std::vector& axis); }; template struct Transpose { void operator()(const DeviceContext& dev_ctx, const DenseTensor& in, DenseTensor* out, const std::vector& axis) { Eigen::array permute; for (int i = 0; i < Rank; i++) { permute[i] = axis[i]; } auto eigen_in = pten::EigenTensor::From(in); auto eigen_out = pten::EigenTensor::From(*out); auto* dev = dev_ctx.eigen_device(); // use 32bit index to speed up computation bool use_32bit_index = eigen_out.size() < Eigen::NumTraits::highest(); bool is_gpu_place = paddle::platform::is_gpu_place(dev_ctx.GetPlace()); if (use_32bit_index && is_gpu_place) { To32BitIndex(eigen_out).device(*dev) = To32BitIndex(eigen_in).shuffle(permute); } else { eigen_out.device(*dev) = eigen_in.shuffle(permute); } } }; } // namespace math } // namespace pten