# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os # import all class inside framework into fluid module from . import framework from .framework import * # import all class inside executor into fluid module from . import executor from .executor import * from . import data_feed_desc from .data_feed_desc import * from . import dataset from .dataset import * from . import trainer_desc from . import inferencer from . import io from . import evaluator from . import initializer from . import layers from . import dygraph from . import contrib from . import nets from . import optimizer from . import backward from . import regularizer from . import average from . import metrics from . import transpiler from . import incubate from . import distribute_lookup_table from .param_attr import ParamAttr, WeightNormParamAttr from .data_feeder import DataFeeder from .core import LoDTensor, LoDTensorArray, CPUPlace, CUDAPlace, CUDAPinnedPlace, Scope, _Scope from .incubate import fleet from .incubate import data_generator from .transpiler import DistributeTranspiler, \ memory_optimize, release_memory, DistributeTranspilerConfig from .lod_tensor import create_lod_tensor, create_random_int_lodtensor from . import clip from . import dygraph_grad_clip from . import profiler from . import unique_name from . import recordio_writer from . import parallel_executor from .parallel_executor import * from . import compiler from .compiler import * from paddle.fluid.layers.math_op_patch import monkey_patch_variable from . import install_check from .dygraph.nn import * from .dygraph.layers import * Tensor = LoDTensor __all__ = framework.__all__ + executor.__all__ + \ trainer_desc.__all__ + inferencer.__all__ + transpiler.__all__ + \ parallel_executor.__all__ + lod_tensor.__all__ + \ data_feed_desc.__all__ + compiler.__all__ + [ 'io', 'initializer', 'layers', 'contrib', 'dygraph', 'transpiler', 'nets', 'optimizer', 'learning_rate_decay', 'backward', 'regularizer', 'LoDTensor', 'LoDTensorArray', 'CPUPlace', 'CUDAPlace', 'CUDAPinnedPlace', 'Tensor', 'ParamAttr', 'WeightNormParamAttr', 'DataFeeder', 'clip', 'dygraph_grad_clip', 'profiler', 'unique_name', 'recordio_writer', 'Scope', 'install_check', ] def __bootstrap__(): """ Enable reading gflags from environment variables. Returns: None """ import sys import os import platform from . import core in_test = 'unittest' in sys.modules try: num_threads = int(os.getenv('OMP_NUM_THREADS', '1')) except ValueError: num_threads = 1 if num_threads > 1: print( 'WARNING: OMP_NUM_THREADS set to {0}, not 1. The computation ' 'speed will not be optimized if you use data parallel. It will ' 'fail if this PaddlePaddle binary is compiled with OpenBlas since' ' OpenBlas does not support multi-threads.'.format(num_threads), file=sys.stderr) print('PLEASE USE OMP_NUM_THREADS WISELY.', file=sys.stderr) os.environ['OMP_NUM_THREADS'] = str(num_threads) sysstr = platform.system() read_env_flags = [ 'check_nan_inf', 'benchmark', 'eager_delete_scope', 'initial_cpu_memory_in_mb', 'init_allocated_mem', 'free_idle_memory', 'paddle_num_threads', "dist_threadpool_size", 'eager_delete_tensor_gb', 'fast_eager_deletion_mode', 'memory_fraction_of_eager_deletion', 'allocator_strategy', 'reader_queue_speed_test_mode', 'print_sub_graph_dir', 'pe_profile_fname', 'inner_op_parallelism', 'enable_parallel_graph', 'fuse_parameter_groups_size', 'multiple_of_cupti_buffer_size', 'fuse_parameter_memory_size', 'tracer_profile_fname' ] if 'Darwin' not in sysstr: read_env_flags.append('use_pinned_memory') if os.name != 'nt': read_env_flags.append('cpu_deterministic') if core.is_compiled_with_mkldnn(): read_env_flags.append('use_mkldnn') if core.is_compiled_with_ngraph(): read_env_flags.append('use_ngraph') if core.is_compiled_with_dist(): #env for rpc read_env_flags.append('rpc_deadline') read_env_flags.append('rpc_server_profile_path') read_env_flags.append('enable_rpc_profiler') read_env_flags.append('rpc_send_thread_num') read_env_flags.append('rpc_get_thread_num') read_env_flags.append('rpc_prefetch_thread_num') read_env_flags.append('rpc_disable_reuse_port') # env for communicator read_env_flags.append('communicator_independent_recv_thread') read_env_flags.append('communicator_send_queue_size') read_env_flags.append('communicator_min_send_grad_num_before_recv') read_env_flags.append('communicator_thread_pool_size') read_env_flags.append('communicator_max_merge_var_num') read_env_flags.append('communicator_fake_rpc') read_env_flags.append('communicator_send_wait_times') if core.is_compiled_with_brpc(): read_env_flags.append('max_body_size') #set brpc max body size os.environ['FLAGS_max_body_size'] = "2147483647" if core.is_compiled_with_cuda(): read_env_flags += [ 'fraction_of_gpu_memory_to_use', 'initial_gpu_memory_in_mb', 'reallocate_gpu_memory_in_mb', 'cudnn_deterministic', 'enable_cublas_tensor_op_math', 'conv_workspace_size_limit', 'cudnn_exhaustive_search', 'selected_gpus', 'sync_nccl_allreduce', 'limit_of_tmp_allocation', 'times_excess_than_required_tmp_allocation', 'enable_inplace_whitelist', 'cudnn_batchnorm_spatial_persistent' ] core.init_gflags([sys.argv[0]] + ["--tryfromenv=" + ",".join(read_env_flags)]) core.init_glog(sys.argv[0]) # don't init_p2p when in unittest to save time. core.init_devices(not in_test) # TODO(panyx0718): Avoid doing complex initialization logic in __init__.py. # Consider paddle.init(args) or paddle.main(args) monkey_patch_variable() __bootstrap__()