# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import astor import numpy as np # noqa: F401 import paddle # noqa: F401 from paddle import fluid # noqa: F401 from paddle.fluid import dygraph # noqa: F401 from paddle.fluid import layers # noqa: F401 from paddle.fluid.dygraph import to_variable # noqa: F401 from paddle.utils import gast from .ast_utils import ast_to_source_code from .logging_utils import warn def index_in_list(array_list, item): try: return array_list.index(item) except ValueError: # Item not in array_list return -1 # Note(Aurelius): Do not forget the dot `.` to distinguish other # module such as paddlenlp. PADDLE_MODULE_PREFIX = 'paddle.' DYGRAPH_TO_STATIC_MODULE_PREFIX = 'paddle.jit.dy2static' DYGRAPH_MODULE_PREFIX = 'paddle.fluid.dygraph' def is_dygraph_api(node): # Note: A api in module dygraph_to_static is not a real dygraph api. if is_api_in_module(node, DYGRAPH_TO_STATIC_MODULE_PREFIX): return False # TODO(liym27): A better way to determine whether it is a dygraph api. # Consider the decorator @dygraph_only return is_api_in_module(node, DYGRAPH_MODULE_PREFIX) def is_api_in_module(node, module_prefix): assert isinstance(node, gast.Call), "Input non-Call node for is_dygraph_api" # Python can have gast.Call as function, for example: covert_call(func)(x) # We only check the most outside function func_node = node.func while isinstance(func_node, gast.Call): func_node = func_node.func func_str = astor.to_source(gast.gast_to_ast(func_node)).strip() try: import paddle.jit.dy2static as _jst # noqa: F401 from paddle import to_tensor # noqa: F401 return eval( "_is_api_in_module_helper({}, '{}')".format(func_str, module_prefix) ) except Exception: return False def _is_api_in_module_helper(obj, module_prefix): m = inspect.getmodule(obj) return m is not None and m.__name__.startswith(module_prefix) # Is numpy_api cannot reuse is_api_in_module because of numpy module problem def is_numpy_api(node): assert isinstance(node, gast.Call), "Input non-Call node for is_numpy_api" func_str = astor.to_source(gast.gast_to_ast(node.func)) try: module_result = eval( "_is_api_in_module_helper({}, '{}')".format(func_str, "numpy") ) # BUG: np.random.uniform doesn't have module and cannot be analyzed # TODO: find a better way return module_result or ( func_str.startswith("numpy.") or func_str.startswith("np.") ) except Exception: return False def is_paddle_api(node): return is_api_in_module(node, PADDLE_MODULE_PREFIX) class NodeVarType: """ Enum class of python variable types. We have to know some variable types during compile time to transfer AST. For example, a string variable and a tensor variable in if clause may lead to different conversion from dygraph to static graph. """ ERROR = -1 # Returns when static analysis gets error UNKNOWN = 0 # Reserve for AST nodes have not known the type STATEMENT = 1 # For nodes representing statement (non-variable type) CALLABLE = 2 # python data types NONE = 100 BOOLEAN = 101 INT = 102 FLOAT = 103 STRING = 104 TENSOR = 105 NUMPY_NDARRAY = 106 # python collections LIST = 200 SET = 201 DICT = 202 PADDLE_DYGRAPH_API = 300 PADDLE_CONTROL_IF = 301 PADDLE_CONTROL_WHILE = 302 PADDLE_CONTROL_FOR = 303 # Paddle API may not be visible to get source code. # We use this enum value to denote the type return by a Paddle API PADDLE_RETURN_TYPES = 304 # If node.node_var_type in TENSOR_TYPES, it can be considered as tensor-dependent. TENSOR_TYPES = {TENSOR, PADDLE_RETURN_TYPES} Annotation_map = { "Tensor": TENSOR, "paddle.Tensor": TENSOR, "int": INT, "float": FLOAT, "bool": BOOLEAN, "str": STRING, } @staticmethod def binary_op_output_type(in_type1, in_type2): if in_type1 == in_type2: return in_type1 if in_type1 == NodeVarType.UNKNOWN: return in_type2 if in_type2 == NodeVarType.UNKNOWN: return in_type1 supported_types = [ NodeVarType.BOOLEAN, NodeVarType.INT, NodeVarType.FLOAT, NodeVarType.NUMPY_NDARRAY, NodeVarType.TENSOR, NodeVarType.PADDLE_RETURN_TYPES, ] if in_type1 not in supported_types: return NodeVarType.UNKNOWN if in_type2 not in supported_types: return NodeVarType.UNKNOWN forbidden_types = [NodeVarType.NUMPY_NDARRAY, NodeVarType.TENSOR] if in_type1 in forbidden_types and in_type2 in forbidden_types: return NodeVarType.UNKNOWN return max(in_type1, in_type2) @staticmethod def type_from_annotation(annotation): annotation_str = ast_to_source_code(annotation).strip() if annotation_str in NodeVarType.Annotation_map: return NodeVarType.Annotation_map[annotation_str] # raise warning if not found warn("Currently we don't support annotation: %s" % annotation_str) return NodeVarType.UNKNOWN