// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/fill_diagonal_kernel.h" #include #include #include "paddle/fluid/framework/convert_utils.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template __global__ void fill_constant_kernel(const int64_t featuresize, T* in_data, int64_t strides, int offset, T fillvar, int dims) { for (int64_t idx = blockIdx.x * featuresize + threadIdx.x; idx * strides + offset < (blockIdx.x + 1) * featuresize; idx += blockDim.x) { // to check if the new position with offset is still in the same line; // this modify should not affect across lines. // out_dims[1] is also work for tensor with dim>2, for which the dims must // be the same number if ((idx * strides) % dims + offset < dims && (idx * strides) % dims + offset >= 0) { in_data[idx * strides + offset] = fillvar; } } } template void FillDiagonalKernel(const Context& ctx, const DenseTensor& x, float value, int offset, bool wrap, DenseTensor* out) { #ifdef __HIPCC__ const int64_t kMaxBlockDim = 256; #else const int64_t kMaxBlockDim = 512; #endif phi::Copy(ctx, x, ctx.GetPlace(), false, out); T* out_data = ctx.template Alloc(out); auto fill_val = static_cast(value); T temp_var = static_cast(fill_val); auto size = out->numel(); auto out_dims = out->dims(); auto strides = CalStride(out_dims); // The wrap mode supported only the dims equels to 2; In wrap mode, the // value will be filled in cycles if (!wrap) { size = std::min(size, out_dims[1] * out_dims[1]); } int64_t kBlockDim = std::min(int64_t(size / strides), kMaxBlockDim); fill_constant_kernel<<<1, kBlockDim, 0>>>( size, out_data, strides, offset, temp_var, out_dims[1]); } } // namespace phi PD_REGISTER_KERNEL(fill_diagonal, GPU, ALL_LAYOUT, phi::FillDiagonalKernel, float, double, int64_t, int, phi::dtype::float16, bool) {}