/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/fluid/operators/elementwise/elementwise_mlu.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template class ElementwiseSubMLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { MLUOpTensorKernel(ctx, CNNL_OP_TENSOR_SUB); } }; template class ElementwiseSubGradMLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto& dev_ctx = ctx.template device_context(); auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); auto* dy = ctx.Output(framework::GradVarName("Y")); int axis = ctx.Attr("axis"); axis = (axis == -1 ? std::abs(x->dims().size() - y->dims().size()) : axis); MLUCnnlTensorDesc dout_desc(*dout); if (dx) { dx->mutable_data(ctx.GetPlace()); if (dx->dims() != dout->dims()) { std::vector dst_dims_vec; std::vector reduce_axes; GetReduceAxesAndDstDims(axis, dout->dims(), dx->dims(), &reduce_axes, &dst_dims_vec); MLUCnnlReduceDesc reduction_desc( reduce_axes, CNNL_REDUCE_ADD, ToCnnlDataType(), CNNL_NOT_PROPAGATE_NAN, CNNL_REDUCE_NO_INDICES, CNNL_32BIT_INDICES); MLUCnnlTensorDesc dx_desc(dst_dims_vec.size(), dst_dims_vec.data(), ToCnnlDataType()); MLUCnnl::Reduce(ctx, true /*need_workspace*/, reduction_desc.get(), nullptr, dout_desc.get(), GetBasePtr(dout), 0, nullptr, nullptr, dx_desc.get(), GetBasePtr(dx)); } else { framework::TensorCopy(*dout, ctx.GetPlace(), dev_ctx, dx); } } if (dy) { dy->mutable_data(ctx.GetPlace()); Tensor* tmp_dout = const_cast(dout); if (dy->dims() != dout->dims()) { std::vector dst_dims_vec; std::vector reduce_axes; GetReduceAxesAndDstDims(axis, dout->dims(), dy->dims(), &reduce_axes, &dst_dims_vec); MLUCnnlReduceDesc reduction_desc( reduce_axes, CNNL_REDUCE_ADD, ToCnnlDataType(), CNNL_NOT_PROPAGATE_NAN, CNNL_REDUCE_NO_INDICES, CNNL_32BIT_INDICES); MLUCnnlTensorDesc dy_desc(dst_dims_vec.size(), dst_dims_vec.data(), ToCnnlDataType()); MLUCnnl::Reduce(ctx, true /*need_workspace*/, reduction_desc.get(), nullptr, dout_desc.get(), GetBasePtr(dout), 0, nullptr, nullptr, dy_desc.get(), GetBasePtr(dy)); tmp_dout = dy; } // call neg op, dy = -dout MLUCnnlTensorDesc tmp_dout_desc(*tmp_dout); MLUCnnlTensorDesc dy_desc(*dy); MLUUnary(ctx, CNNL_COMPUTATION_HIGH_PRECISION, tmp_dout_desc.get(), GetBasePtr(tmp_dout), dy_desc.get(), GetBasePtr(dy)); } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; REGISTER_OP_MLU_KERNEL(elementwise_sub, ops::ElementwiseSubMLUKernel, ops::ElementwiseSubMLUKernel, ops::ElementwiseSubMLUKernel); REGISTER_OP_MLU_KERNEL(elementwise_sub_grad, ops::ElementwiseSubGradMLUKernel, ops::ElementwiseSubGradMLUKernel, ops::ElementwiseSubGradMLUKernel);