# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import layers from framework import Variable from initializer import init_on_cpu __all__ = [ 'exponential_decay', 'natural_exp_decay', 'inverse_time_decay', 'polynomial_decay', 'piecewise_decay' ] """ When training a model, it's often useful to decay the learning rate during training process, this is called learning_rate_decay. There are many strategies to do this, this module will provide some classical method. User can also implement their own learning_rate_decay strategy according to this module. """ def float_global_step(): # the first global step is zero in learning rate decay global_step = layers.autoincreased_step_counter( counter_name='@LR_DECAY_COUNTER@', begin=0, step=1) global_step = layers.cast(global_step, 'float32') return global_step def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False): """Applies exponential decay to the learning rate. ```python decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) ``` Args: learning_rate: A scalar float32 value or a Variable. This will be the initial learning rate during training decay_steps: A Python `int32` number. decay_rate: A Python `float` number. staircase: Boolean. If set true, decay the learning rate every decay_steps. Returns: The decayed learning rate """ global_step = float_global_step() with init_on_cpu(): # update learning_rate div_res = global_step / decay_steps if staircase: div_res = layers.floor(x=div_res) decayed_lr = learning_rate * (decay_rate**div_res) return decayed_lr def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False): """Applies natural exponential decay to the initial learning rate. >>> if not staircase: >>> decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps)) >>> else: >>> decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps)) Args: learning_rate: A scalar float32 value or a Variable. This will be the initial learning rate during training decay_steps: A Python `int32` number. decay_rate: A Python `float` number. staircase: Boolean. If set true, decay the learning rate every decay_steps. Returns: The decayed learning rate """ global_step = float_global_step() with init_on_cpu(): div_res = global_step / decay_steps if staircase: div_res = layers.floor(x=div_res) decayed_lr = learning_rate * layers.exp(x=(-1 * decay_rate * div_res)) return decayed_lr def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False): """Applies inverse time decay to the initial learning rate. >>> if staircase: >>> decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step)) >>> else: >>> decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step) Args: learning_rate: A scalar float32 value or a Variable. This will be the initial learning rate during training. decay_steps: A Python `int32` number. decay_rate: A Python `float` number. staircase: Boolean. If set true, decay the learning rate every decay_steps. Returns: The decayed learning rate """ global_step = float_global_step() with init_on_cpu(): div_res = global_step / decay_steps if staircase: div_res = layers.floor(x=div_res) decayed_lr = learning_rate / (1 + decay_rate * div_res) return decayed_lr def polynomial_decay(learning_rate, decay_steps, end_learning_rate=0.0001, power=1.0, cycle=False): """Applies polynomial decay to the initial learning rate. >>> if cycle: >>> decay_steps = decay_steps * ceil(global_step / decay_steps) >>> else: >>> global_step = min(global_step, decay_steps) >>> decayed_learning_rate = (learning_rate - end_learning_rate) * >>> (1 - global_step / decay_steps) ^ power + >>> end_learning_rate Args: learning_rate: A scalar float32 value or a Variable. This will be the initial learning rate during training decay_steps: A Python `int32` number. end_learning_rate: A Python `float` number. power: A Python `float` number cycle: Boolean. If set true, decay the learning rate every decay_steps. Returns: The decayed learning rate """ global_step = float_global_step() with init_on_cpu(): if cycle: div_res = layers.ceil(x=(global_step / decay_steps)) zero_var = layers.fill_constant( shape=[1], dtype='float32', value=0.0) one_var = layers.fill_constant( shape=[1], dtype='float32', value=1.0) with layers.Switch() as switch: with switch.case(global_step == zero_var): layers.assign(input=one_var, output=div_res) decay_steps = decay_steps * div_res else: decay_steps_var = layers.fill_constant( shape=[1], dtype='float32', value=float(decay_steps)) global_step = layers.elementwise_min( x=global_step, y=decay_steps_var) decayed_lr = (learning_rate - end_learning_rate) * \ ((1 - global_step / decay_steps) ** power) + end_learning_rate return decayed_lr def piecewise_decay(boundaries, values): """Applies piecewise decay to the initial learning rate. >>> boundaries = [10000, 20000] >>> values = [1.0, 0.5, 0.1] >>> >>> if step < 10000: >>> learning_rate = 1.0 >>> elif 10000 <= step < 20000: >>> learning_rate = 0.5 >>> else: >>> learning_rate = 0.1 """ if len(values) - len(boundaries) != 1: raise ValueError("len(values) - len(boundaries) should be 1") global_step = float_global_step() with init_on_cpu(): lr = layers.create_global_var( shape=[1], value=0.0, dtype='float32', persistable=True, name="learning_rate") with layers.Switch() as switch: for i in range(len(boundaries)): boundary_val = layers.fill_constant( shape=[1], dtype='float32', value=float(boundaries[i])) value_var = layers.fill_constant( shape=[1], dtype='float32', value=float(values[i])) with switch.case(global_step < boundary_val): layers.assign(value_var, lr) last_value_var = layers.fill_constant( shape=[1], dtype='float32', value=float(values[len(values) - 1])) with switch.default(): layers.assign(last_value_var, lr) return lr