# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest import paddle def iou(box_a, box_b): """Apply intersection-over-union overlap between box_a and box_b """ xmin_a = min(box_a[0], box_a[2]) ymin_a = min(box_a[1], box_a[3]) xmax_a = max(box_a[0], box_a[2]) ymax_a = max(box_a[1], box_a[3]) xmin_b = min(box_b[0], box_b[2]) ymin_b = min(box_b[1], box_b[3]) xmax_b = max(box_b[0], box_b[2]) ymax_b = max(box_b[1], box_b[3]) area_a = (ymax_a - ymin_a) * (xmax_a - xmin_a) area_b = (ymax_b - ymin_b) * (xmax_b - xmin_b) if area_a <= 0 and area_b <= 0: return 0.0 xa = max(xmin_a, xmin_b) ya = max(ymin_a, ymin_b) xb = min(xmax_a, xmax_b) yb = min(ymax_a, ymax_b) inter_area = max(xb - xa, 0.0) * max(yb - ya, 0.0) iou_ratio = inter_area / (area_a + area_b - inter_area) return iou_ratio def nms(boxes, nms_threshold): selected_indices = np.zeros(boxes.shape[0], dtype=np.int64) keep = np.ones(boxes.shape[0], dtype=int) io_ratio = np.ones((boxes.shape[0], boxes.shape[0]), dtype=np.float64) cnt = 0 for i in range(boxes.shape[0]): if keep[i] == 0: continue selected_indices[cnt] = i cnt += 1 for j in range(i + 1, boxes.shape[0]): io_ratio[i][j] = iou(boxes[i], boxes[j]) if keep[j]: overlap = iou(boxes[i], boxes[j]) keep[j] = 1 if overlap <= nms_threshold else 0 else: continue return selected_indices class TestNMSOp(OpTest): def setUp(self): self.op_type = 'nms' self.python_api = paddle.vision.ops.nms self.dtype = np.float64 self.init_dtype_type() boxes = np.random.rand(32, 4).astype(self.dtype) boxes[:, 2] = boxes[:, 0] + boxes[:, 2] boxes[:, 3] = boxes[:, 1] + boxes[:, 3] paddle.disable_static() self.inputs = {'Boxes': boxes} self.attrs = {'iou_threshold': 0.5} out_py = nms(boxes, self.attrs['iou_threshold']) self.outputs = {'KeepBoxesIdxs': out_py} paddle.enable_static() def init_dtype_type(self): pass def test_check_output(self): self.check_output(check_eager=True) if __name__ == "__main__": unittest.main()