# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle from op_test import OpTest from gradient_checker import grad_check class TestEigvalshOp(OpTest): def setUp(self): paddle.enable_static() self.op_type = "eigvalsh" self.init_input() self.init_config() np.random.seed(123) out_w, out_v = np.linalg.eigh(self.x_np, self.UPLO) self.inputs = {"X": self.x_np} self.attrs = {"UPLO": self.UPLO, "is_test": False} self.outputs = {'Eigenvalues': out_w, 'Eigenvectors': out_v} def init_config(self): self.UPLO = 'L' def init_input(self): self.x_shape = (10, 10) self.x_type = np.float64 self.x_np = np.random.random(self.x_shape).astype(self.x_type) def test_check_output(self): # Vectors in posetive or negative is equivalent self.check_output(no_check_set=['Eigenvectors']) def test_grad(self): self.check_grad(["X"], ["Eigenvalues"]) class TestEigvalshUPLOCase(TestEigvalshOp): def init_config(self): self.UPLO = 'U' class TestEigvalshGPUCase(unittest.TestCase): def setUp(self): self.x_shape = [32, 32] self.dtype = "float32" np.random.seed(123) self.x_np = np.random.random(self.x_shape).astype(self.dtype) self.rtol = 1e-5 self.atol = 1e-5 def test_check_output_gpu(self): if paddle.is_compiled_with_cuda(): paddle.disable_static(place=paddle.CUDAPlace(0)) input_real_data = paddle.to_tensor(self.x_np) expected_w = np.linalg.eigvalsh(self.x_np) actual_w = paddle.linalg.eigvalsh(input_real_data) np.testing.assert_allclose( actual_w, expected_w, rtol=self.rtol, atol=self.atol) class TestEigvalshAPI(unittest.TestCase): def setUp(self): self.init_input_shape() self.dtype = "float32" self.UPLO = 'L' self.rtol = 1e-6 self.atol = 1e-6 self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \ else paddle.CPUPlace() np.random.seed(123) self.real_data = np.random.random(self.x_shape).astype(self.dtype) self.complex_data = np.random.random(self.x_shape).astype( self.dtype) + 1J * np.random.random(self.x_shape).astype(self.dtype) self.trans_dims = list(range(len(self.x_shape) - 2)) + [ len(self.x_shape) - 1, len(self.x_shape) - 2 ] def init_input_shape(self): self.x_shape = [5, 5] def compare_result(self, actual_w, expected_w): np.testing.assert_allclose( actual_w, expected_w, rtol=self.rtol, atol=self.atol) def check_static_float_result(self): main_prog = paddle.static.Program() startup_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, startup_prog): input_x = paddle.static.data( 'input_x', shape=self.x_shape, dtype=self.dtype) output_w = paddle.linalg.eigvalsh(input_x) exe = paddle.static.Executor(self.place) expected_w = exe.run(main_prog, feed={"input_x": self.real_data}, fetch_list=[output_w]) actual_w = np.linalg.eigvalsh(self.real_data) self.compare_result(actual_w, expected_w[0]) def check_static_complex_result(self): main_prog = paddle.static.Program() startup_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, startup_prog): x_dtype = np.complex64 if self.dtype == "float32" else np.complex128 input_x = paddle.static.data( 'input_x', shape=self.x_shape, dtype=x_dtype) output_w = paddle.linalg.eigvalsh(input_x) exe = paddle.static.Executor(self.place) expected_w = exe.run(main_prog, feed={"input_x": self.complex_data}, fetch_list=[output_w]) actual_w = np.linalg.eigvalsh(self.complex_data) self.compare_result(actual_w, expected_w[0]) def test_in_static_mode(self): paddle.enable_static() self.check_static_float_result() self.check_static_complex_result() def test_in_dynamic_mode(self): paddle.disable_static(self.place) input_real_data = paddle.to_tensor(self.real_data) expected_w = np.linalg.eigvalsh(self.real_data) actual_w = paddle.linalg.eigvalsh(input_real_data) self.compare_result(actual_w, expected_w) input_complex_data = paddle.to_tensor(self.complex_data) expected_w = np.linalg.eigvalsh(self.complex_data) actual_w = paddle.linalg.eigvalsh(input_complex_data) self.compare_result(actual_w, expected_w) def test_eigvalsh_grad(self): paddle.disable_static(self.place) x = paddle.to_tensor(self.complex_data, stop_gradient=False) w = paddle.linalg.eigvalsh(x) (w.sum()).backward() np.testing.assert_allclose( abs(x.grad.numpy()), abs(x.grad.numpy().conj().transpose(self.trans_dims)), rtol=self.rtol, atol=self.atol) class TestEigvalshBatchAPI(TestEigvalshAPI): def init_input_shape(self): self.x_shape = [2, 5, 5] class TestEigvalshAPIError(unittest.TestCase): def test_error(self): main_prog = paddle.static.Program() startup_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, startup_prog): #input maxtrix must greater than 2 dimensions input_x = paddle.static.data( name='x_1', shape=[12], dtype='float32') self.assertRaises(ValueError, paddle.linalg.eigvalsh, input_x) #input matrix must be square matrix input_x = paddle.static.data( name='x_2', shape=[12, 32], dtype='float32') self.assertRaises(ValueError, paddle.linalg.eigvalsh, input_x) #uplo must be in 'L' or 'U' input_x = paddle.static.data( name='x_3', shape=[4, 4], dtype="float32") uplo = 'R' self.assertRaises(ValueError, paddle.linalg.eigvalsh, input_x, uplo) #x_data cannot be integer input_x = paddle.static.data( name='x_4', shape=[4, 4], dtype="int32") self.assertRaises(TypeError, paddle.linalg.eigvalsh, input_x) if __name__ == "__main__": unittest.main()